Hyperspectral Image Classification Based on Relaxed Clustering Assumption and Spatial Laplace Regularizer
In this letter, a relaxed clustering assumption and spatial Laplace-regularizer-based semisupervised hyperspectral image classifier is proposed. Considering the mixed pixels and noise intrinsic in hyperspectral image, we relax the clustering assumption employed in most of the available classifiers s...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2014-05, Vol.11 (5), p.901-905 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, a relaxed clustering assumption and spatial Laplace-regularizer-based semisupervised hyperspectral image classifier is proposed. Considering the mixed pixels and noise intrinsic in hyperspectral image, we relax the clustering assumption employed in most of the available classifiers so that the similar hyperspectral vectors tend to share the "similar" labels instead of the "same" label, to formulate a modified spectral similarity regularizer. Moreover, the spatial homogeneity assumption is cast on hyperspectral pixels to construct a spatial regularizer, to overcome the salt-and-pepper misclassification of images. The effectiveness of our proposed method is evaluated via experiments on AVIRIS data, and the results show that it exhibits state-of-the-art performance, particularly when there are a small number of training samples. |
---|---|
ISSN: | 1545-598X 1558-0571 |
DOI: | 10.1109/LGRS.2013.2281311 |