Effect of Interface Control on Mode I Interlaminar Fracture Toughness of Woven C/C Composite Laminates

Effects of fiber/matrix interface and matrix microstructure on the mode I interlaminar fracture toughness of C/C composite materials were investigated by coating bismaleimide-triazine co-polymer (BT-resin) on the surface of carbon fiber and changing the heat-treatment temperature (HTT). For the case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JSME International Journal Series A Solid Mechanics and Material Engineering 2001, Vol.44(4), pp.573-581
Hauptverfasser: HOJO, Masaki, YAMAO, Taketoshi, TANAKA, Mototsugu, OCHIAI, Shojiro, IWASHITA, Norio, SAWADA, Yoshihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Effects of fiber/matrix interface and matrix microstructure on the mode I interlaminar fracture toughness of C/C composite materials were investigated by coating bismaleimide-triazine co-polymer (BT-resin) on the surface of carbon fiber and changing the heat-treatment temperature (HTT). For the case of laminates with HTT of 1600°C (carbonized C/C composites), the initial fracture toughness, GIC, was insensitive to BT-resin coating. Moreover, the fracture toughness during crack propagation, GIR, increased by coating BT-resin. On the other hand, both GIC and GIR decreased with BT-resin coating for the laminates with HTT of 2500°C. While both GIC and GIR are insensitive to HTT for laminates without BT-resin coating, they both decreased by increasing HTT for laminates with BT-resin coating. The difference of the effects of interface control and HTT was discussed on the basis of microscopic mechanism consideration. Comparison between in-plane and interlaminar strength indicated the possibility to optimize the interface control.
ISSN:1344-7912
1347-5363
DOI:10.1299/jsmea.44.573