Boundary Element Analysis for Unsteady Elastodynamic Problems Based on the Laplace Transform
In the present paper, the boundary element method(BEM) for unsteady elastodynamic problems based on the Laplace transform is discussed. In the Laplace transformed BEM, the accuracy of teh numerical results is generally governed by the numerical treatment of the inverse Laplace transformation for the...
Gespeichert in:
Veröffentlicht in: | JSME International Journal Series A Solid Mechanics and Material Engineering 1999/10/15, Vol.42(4), pp.507-514 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper, the boundary element method(BEM) for unsteady elastodynamic problems based on the Laplace transform is discussed. In the Laplace transformed BEM, the accuracy of teh numerical results is generally governed by the numerical treatment of the inverse Laplace transformation for the transformed solutions. Two types of numerical inverse Laplace transformation(NILT) formula, namely Krings & Waller's method and Hosono's method are applied to the 2-dimensional BEM analysis employing regularized boundary integral equations. It is shown that there is a stability condition between the element size and the time discretization. The characteristics of two types of NILT methods are found out through 2-dimensional BEM analyses for the unsteady elastodynamic problems. |
---|---|
ISSN: | 1344-7912 1347-5363 |
DOI: | 10.1299/jsmea.42.507 |