Radio observations of extreme ULXs: revealing the most powerful ULX radio nebula ever or the jet of an intermediate-mass black hole?
The most extreme ultraluminous X-ray sources (ULXs), with LX > 5 x 10... erg s..., are amongst the best candidates for hosting intermediate-mass black holes (IMBHs) in the haloes of galaxies. Jet radio emission is expected from a sub-Eddington accreting IMBH in the low/hard (radio bright) state....
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2013-12, Vol.436 (4), p.3128-3134 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The most extreme ultraluminous X-ray sources (ULXs), with LX > 5 x 10... erg s..., are amongst the best candidates for hosting intermediate-mass black holes (IMBHs) in the haloes of galaxies. Jet radio emission is expected from a sub-Eddington accreting IMBH in the low/hard (radio bright) state. In a search for such IMBH jet radio emission, we have observed with the Very Large Array (VLA) at 5 GHz a sample of seven extreme ULXs whose X-ray properties indicate they are in the hard state. Assuming they remain in this state, the non-detection of radio emission for six of the target sources allows us to constrain their black hole mass to the IMBH regime, thus ruling out a supermassive black hole nature. For the extreme ULX in the galaxy NGC 2276, we detect extended radio emission formed by two lobes of total flux density 1.43 ± 0.22 mJy and size ~650 pc. The X-ray counterpart is located between the two lobes, suggesting the presence of a black hole with jet radio emission. The radio luminosity allows us to constrain the black hole mass of this source to the IMBH regime; hence, the extreme ULX in NGC 2276 could be the first detection of extended jet radio emission from an IMBH. The radio emission could also possibly come from a radio nebula powered by the ULX with a minimum total energy of 5.9 x 10... erg, thus constituting the most powerful and largest ULX radio nebula ever observed. (ProQuest: ... denotes formulae/symbols omitted.) |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stt1794 |