Clues on void evolution–II. Measuring density and velocity profiles on SDSS galaxy redshift space distortions

Using the redshift space distortions of void-galaxy cross-correlation function we analyse the dynamics of voids embedded in different environments. We compute the void-galaxy cross-correlation function in the Sloan Digital Sky Survey (SDSS) in terms of distances taken along the line of sight and pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2013-12, Vol.436 (4), p.3480-3491
Hauptverfasser: Paz, Dante, Lares, Marcelo, Ceccarelli, Laura, Padilla, Nelson, Lambas, Diego García
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using the redshift space distortions of void-galaxy cross-correlation function we analyse the dynamics of voids embedded in different environments. We compute the void-galaxy cross-correlation function in the Sloan Digital Sky Survey (SDSS) in terms of distances taken along the line of sight and projected into the sky. We analyse the distortions on the cross-correlation isodensity levels and find anisotropic isocontours consistent with expansion for large voids with smoothly rising density profiles and collapse for small voids with overdense shells surrounding them. Based on the linear approach of gravitational collapse theory we developed a parametric model of the void-galaxy redshift space cross-correlation function. We show that this model can be used to successfully recover the underlying velocity and density profiles of voids from redshift space samples. By applying this technique to real data, we confirm the twofold nature of void dynamics: large voids typically are in an expansion phase whereas small voids tend to be surrounded by overdense and collapsing regions. These results are obtained from the SDSS spectroscopic galaxy catalogue and also from semi-analytic mock galaxy catalogues, thus supporting the viability of the standard ...cold dark matter model to reproduce large-scale structure and dynamics. (ProQuest: ... denotes formulae/symbols omitted.)
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stt1836