The Research of Data Stream Classification Based on Rough Set Theory-Neural Network Integration

According to the high speed of data arriving, a large amount of data and concept drifting in the stream model, combining the techniques of rough set theory, neural network and voting rule, we put forward a new data stream classification model, which is a multi-classifier integration based on rough s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-01, Vol.441, p.717-720
Hauptverfasser: Wei, Yu Zhou, Ren, Zhi Bo, Sun, Lei, Yan, Chun Miao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 720
container_issue
container_start_page 717
container_title Applied Mechanics and Materials
container_volume 441
creator Wei, Yu Zhou
Ren, Zhi Bo
Sun, Lei
Yan, Chun Miao
description According to the high speed of data arriving, a large amount of data and concept drifting in the stream model, combining the techniques of rough set theory, neural network and voting rule, we put forward a new data stream classification model, which is a multi-classifier integration based on rough set theory, neural network. Firstly, it reduces all attributes using rough set theory; secondly, it constructs base classifiers on the data chunks after the reduction of attributes using the improved BP neural network; finally, it fuses various base classifiers into an ensemble by voting rule. Through applying the model to classify data stream, the experiment results show that the ensemble method is feasible and effective.
doi_str_mv 10.4028/www.scientific.net/AMM.441.717
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1465433423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147775431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-86ac8ef27a7deef87f0b585e740036bdd5e77707ccb063bf55266a895c26fe603</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhoMXsFbfISC4m2kmySSZjVjrFapCq-uQpid2ajtTk5TStzdaQZeuzg_nv8CH0HlBck6o6m02mzzYGppYu9rmDcRe__Ex57zIZSH3UKcQgmaSK7qPTiupGGFSlRVh9OD7R7KKMXGEjkOYEyJ4wVUH6ZcZ4BEEMN7OcOvwtYkGj6MHs8SDhQnha8zEum3wlQkwxUmM2vXbDI8h4pRu_TZ7grU3C_wEcdP6d_zQRHjz36ETdOjMIsDpz-2i19ubl8F9Nny-exj0h5mlVRkzJYxV4Kg0cgrglHRkUqoSJCeEicl0mqSURFo7IYJNXFlSIYyqSkuFA0FYF53tele-_VhDiHrern2TJnXBRckZ45Ql18XOZX0bggenV75eGr_VBdFfkHWCrH8h6wRZJ8g6QdYJciq43BVEb5oQwc7-7Pyv4hMREIwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465433423</pqid></control><display><type>article</type><title>The Research of Data Stream Classification Based on Rough Set Theory-Neural Network Integration</title><source>Scientific.net Journals</source><creator>Wei, Yu Zhou ; Ren, Zhi Bo ; Sun, Lei ; Yan, Chun Miao</creator><creatorcontrib>Wei, Yu Zhou ; Ren, Zhi Bo ; Sun, Lei ; Yan, Chun Miao</creatorcontrib><description>According to the high speed of data arriving, a large amount of data and concept drifting in the stream model, combining the techniques of rough set theory, neural network and voting rule, we put forward a new data stream classification model, which is a multi-classifier integration based on rough set theory, neural network. Firstly, it reduces all attributes using rough set theory; secondly, it constructs base classifiers on the data chunks after the reduction of attributes using the improved BP neural network; finally, it fuses various base classifiers into an ensemble by voting rule. Through applying the model to classify data stream, the experiment results show that the ensemble method is feasible and effective.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037859032</identifier><identifier>ISBN: 3037859032</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.441.717</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2014-01, Vol.441, p.717-720</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-86ac8ef27a7deef87f0b585e740036bdd5e77707ccb063bf55266a895c26fe603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2789?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wei, Yu Zhou</creatorcontrib><creatorcontrib>Ren, Zhi Bo</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Yan, Chun Miao</creatorcontrib><title>The Research of Data Stream Classification Based on Rough Set Theory-Neural Network Integration</title><title>Applied Mechanics and Materials</title><description>According to the high speed of data arriving, a large amount of data and concept drifting in the stream model, combining the techniques of rough set theory, neural network and voting rule, we put forward a new data stream classification model, which is a multi-classifier integration based on rough set theory, neural network. Firstly, it reduces all attributes using rough set theory; secondly, it constructs base classifiers on the data chunks after the reduction of attributes using the improved BP neural network; finally, it fuses various base classifiers into an ensemble by voting rule. Through applying the model to classify data stream, the experiment results show that the ensemble method is feasible and effective.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037859032</isbn><isbn>3037859032</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkMtKAzEUhoMXsFbfISC4m2kmySSZjVjrFapCq-uQpid2ajtTk5TStzdaQZeuzg_nv8CH0HlBck6o6m02mzzYGppYu9rmDcRe__Ex57zIZSH3UKcQgmaSK7qPTiupGGFSlRVh9OD7R7KKMXGEjkOYEyJ4wVUH6ZcZ4BEEMN7OcOvwtYkGj6MHs8SDhQnha8zEum3wlQkwxUmM2vXbDI8h4pRu_TZ7grU3C_wEcdP6d_zQRHjz36ETdOjMIsDpz-2i19ubl8F9Nny-exj0h5mlVRkzJYxV4Kg0cgrglHRkUqoSJCeEicl0mqSURFo7IYJNXFlSIYyqSkuFA0FYF53tele-_VhDiHrern2TJnXBRckZ45Ql18XOZX0bggenV75eGr_VBdFfkHWCrH8h6wRZJ8g6QdYJciq43BVEb5oQwc7-7Pyv4hMREIwE</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Wei, Yu Zhou</creator><creator>Ren, Zhi Bo</creator><creator>Sun, Lei</creator><creator>Yan, Chun Miao</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140101</creationdate><title>The Research of Data Stream Classification Based on Rough Set Theory-Neural Network Integration</title><author>Wei, Yu Zhou ; Ren, Zhi Bo ; Sun, Lei ; Yan, Chun Miao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-86ac8ef27a7deef87f0b585e740036bdd5e77707ccb063bf55266a895c26fe603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Yu Zhou</creatorcontrib><creatorcontrib>Ren, Zhi Bo</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Yan, Chun Miao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Yu Zhou</au><au>Ren, Zhi Bo</au><au>Sun, Lei</au><au>Yan, Chun Miao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Research of Data Stream Classification Based on Rough Set Theory-Neural Network Integration</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>441</volume><spage>717</spage><epage>720</epage><pages>717-720</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037859032</isbn><isbn>3037859032</isbn><abstract>According to the high speed of data arriving, a large amount of data and concept drifting in the stream model, combining the techniques of rough set theory, neural network and voting rule, we put forward a new data stream classification model, which is a multi-classifier integration based on rough set theory, neural network. Firstly, it reduces all attributes using rough set theory; secondly, it constructs base classifiers on the data chunks after the reduction of attributes using the improved BP neural network; finally, it fuses various base classifiers into an ensemble by voting rule. Through applying the model to classify data stream, the experiment results show that the ensemble method is feasible and effective.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.441.717</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2014-01, Vol.441, p.717-720
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1465433423
source Scientific.net Journals
title The Research of Data Stream Classification Based on Rough Set Theory-Neural Network Integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Research%20of%20Data%20Stream%20Classification%20Based%20on%20Rough%20Set%20Theory-Neural%20Network%20Integration&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Wei,%20Yu%20Zhou&rft.date=2014-01-01&rft.volume=441&rft.spage=717&rft.epage=720&rft.pages=717-720&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037859032&rft.isbn_list=3037859032&rft_id=info:doi/10.4028/www.scientific.net/AMM.441.717&rft_dat=%3Cproquest_cross%3E3147775431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1465433423&rft_id=info:pmid/&rfr_iscdi=true