The Research of Data Stream Classification Based on Rough Set Theory-Neural Network Integration
According to the high speed of data arriving, a large amount of data and concept drifting in the stream model, combining the techniques of rough set theory, neural network and voting rule, we put forward a new data stream classification model, which is a multi-classifier integration based on rough s...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2014-01, Vol.441, p.717-720 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 720 |
---|---|
container_issue | |
container_start_page | 717 |
container_title | Applied Mechanics and Materials |
container_volume | 441 |
creator | Wei, Yu Zhou Ren, Zhi Bo Sun, Lei Yan, Chun Miao |
description | According to the high speed of data arriving, a large amount of data and concept drifting in the stream model, combining the techniques of rough set theory, neural network and voting rule, we put forward a new data stream classification model, which is a multi-classifier integration based on rough set theory, neural network. Firstly, it reduces all attributes using rough set theory; secondly, it constructs base classifiers on the data chunks after the reduction of attributes using the improved BP neural network; finally, it fuses various base classifiers into an ensemble by voting rule. Through applying the model to classify data stream, the experiment results show that the ensemble method is feasible and effective. |
doi_str_mv | 10.4028/www.scientific.net/AMM.441.717 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1465433423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147775431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-86ac8ef27a7deef87f0b585e740036bdd5e77707ccb063bf55266a895c26fe603</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhoMXsFbfISC4m2kmySSZjVjrFapCq-uQpid2ajtTk5TStzdaQZeuzg_nv8CH0HlBck6o6m02mzzYGppYu9rmDcRe__Ex57zIZSH3UKcQgmaSK7qPTiupGGFSlRVh9OD7R7KKMXGEjkOYEyJ4wVUH6ZcZ4BEEMN7OcOvwtYkGj6MHs8SDhQnha8zEum3wlQkwxUmM2vXbDI8h4pRu_TZ7grU3C_wEcdP6d_zQRHjz36ETdOjMIsDpz-2i19ubl8F9Nny-exj0h5mlVRkzJYxV4Kg0cgrglHRkUqoSJCeEicl0mqSURFo7IYJNXFlSIYyqSkuFA0FYF53tele-_VhDiHrern2TJnXBRckZ45Ql18XOZX0bggenV75eGr_VBdFfkHWCrH8h6wRZJ8g6QdYJciq43BVEb5oQwc7-7Pyv4hMREIwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465433423</pqid></control><display><type>article</type><title>The Research of Data Stream Classification Based on Rough Set Theory-Neural Network Integration</title><source>Scientific.net Journals</source><creator>Wei, Yu Zhou ; Ren, Zhi Bo ; Sun, Lei ; Yan, Chun Miao</creator><creatorcontrib>Wei, Yu Zhou ; Ren, Zhi Bo ; Sun, Lei ; Yan, Chun Miao</creatorcontrib><description>According to the high speed of data arriving, a large amount of data and concept drifting in the stream model, combining the techniques of rough set theory, neural network and voting rule, we put forward a new data stream classification model, which is a multi-classifier integration based on rough set theory, neural network. Firstly, it reduces all attributes using rough set theory; secondly, it constructs base classifiers on the data chunks after the reduction of attributes using the improved BP neural network; finally, it fuses various base classifiers into an ensemble by voting rule. Through applying the model to classify data stream, the experiment results show that the ensemble method is feasible and effective.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037859032</identifier><identifier>ISBN: 3037859032</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.441.717</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2014-01, Vol.441, p.717-720</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-86ac8ef27a7deef87f0b585e740036bdd5e77707ccb063bf55266a895c26fe603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2789?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wei, Yu Zhou</creatorcontrib><creatorcontrib>Ren, Zhi Bo</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Yan, Chun Miao</creatorcontrib><title>The Research of Data Stream Classification Based on Rough Set Theory-Neural Network Integration</title><title>Applied Mechanics and Materials</title><description>According to the high speed of data arriving, a large amount of data and concept drifting in the stream model, combining the techniques of rough set theory, neural network and voting rule, we put forward a new data stream classification model, which is a multi-classifier integration based on rough set theory, neural network. Firstly, it reduces all attributes using rough set theory; secondly, it constructs base classifiers on the data chunks after the reduction of attributes using the improved BP neural network; finally, it fuses various base classifiers into an ensemble by voting rule. Through applying the model to classify data stream, the experiment results show that the ensemble method is feasible and effective.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037859032</isbn><isbn>3037859032</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkMtKAzEUhoMXsFbfISC4m2kmySSZjVjrFapCq-uQpid2ajtTk5TStzdaQZeuzg_nv8CH0HlBck6o6m02mzzYGppYu9rmDcRe__Ex57zIZSH3UKcQgmaSK7qPTiupGGFSlRVh9OD7R7KKMXGEjkOYEyJ4wVUH6ZcZ4BEEMN7OcOvwtYkGj6MHs8SDhQnha8zEum3wlQkwxUmM2vXbDI8h4pRu_TZ7grU3C_wEcdP6d_zQRHjz36ETdOjMIsDpz-2i19ubl8F9Nny-exj0h5mlVRkzJYxV4Kg0cgrglHRkUqoSJCeEicl0mqSURFo7IYJNXFlSIYyqSkuFA0FYF53tele-_VhDiHrern2TJnXBRckZ45Ql18XOZX0bggenV75eGr_VBdFfkHWCrH8h6wRZJ8g6QdYJciq43BVEb5oQwc7-7Pyv4hMREIwE</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Wei, Yu Zhou</creator><creator>Ren, Zhi Bo</creator><creator>Sun, Lei</creator><creator>Yan, Chun Miao</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140101</creationdate><title>The Research of Data Stream Classification Based on Rough Set Theory-Neural Network Integration</title><author>Wei, Yu Zhou ; Ren, Zhi Bo ; Sun, Lei ; Yan, Chun Miao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-86ac8ef27a7deef87f0b585e740036bdd5e77707ccb063bf55266a895c26fe603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Yu Zhou</creatorcontrib><creatorcontrib>Ren, Zhi Bo</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Yan, Chun Miao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Yu Zhou</au><au>Ren, Zhi Bo</au><au>Sun, Lei</au><au>Yan, Chun Miao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Research of Data Stream Classification Based on Rough Set Theory-Neural Network Integration</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>441</volume><spage>717</spage><epage>720</epage><pages>717-720</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037859032</isbn><isbn>3037859032</isbn><abstract>According to the high speed of data arriving, a large amount of data and concept drifting in the stream model, combining the techniques of rough set theory, neural network and voting rule, we put forward a new data stream classification model, which is a multi-classifier integration based on rough set theory, neural network. Firstly, it reduces all attributes using rough set theory; secondly, it constructs base classifiers on the data chunks after the reduction of attributes using the improved BP neural network; finally, it fuses various base classifiers into an ensemble by voting rule. Through applying the model to classify data stream, the experiment results show that the ensemble method is feasible and effective.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.441.717</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2014-01, Vol.441, p.717-720 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1465433423 |
source | Scientific.net Journals |
title | The Research of Data Stream Classification Based on Rough Set Theory-Neural Network Integration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Research%20of%20Data%20Stream%20Classification%20Based%20on%20Rough%20Set%20Theory-Neural%20Network%20Integration&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Wei,%20Yu%20Zhou&rft.date=2014-01-01&rft.volume=441&rft.spage=717&rft.epage=720&rft.pages=717-720&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037859032&rft.isbn_list=3037859032&rft_id=info:doi/10.4028/www.scientific.net/AMM.441.717&rft_dat=%3Cproquest_cross%3E3147775431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1465433423&rft_id=info:pmid/&rfr_iscdi=true |