The Research of Data Stream Classification Based on Rough Set Theory-Neural Network Integration
According to the high speed of data arriving, a large amount of data and concept drifting in the stream model, combining the techniques of rough set theory, neural network and voting rule, we put forward a new data stream classification model, which is a multi-classifier integration based on rough s...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2014-01, Vol.441, p.717-720 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | According to the high speed of data arriving, a large amount of data and concept drifting in the stream model, combining the techniques of rough set theory, neural network and voting rule, we put forward a new data stream classification model, which is a multi-classifier integration based on rough set theory, neural network. Firstly, it reduces all attributes using rough set theory; secondly, it constructs base classifiers on the data chunks after the reduction of attributes using the improved BP neural network; finally, it fuses various base classifiers into an ensemble by voting rule. Through applying the model to classify data stream, the experiment results show that the ensemble method is feasible and effective. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.441.717 |