Global Weak Solutions of the Navier-Stokes System with Nonzero Boundary Conditions
Consider the Navier-Stokes equations in a smooth bounded domain Ω ⊂ R3 and a time interval [0, T), 0 < T ≤ ∞. It is well-known that there exists at least one global weak solution u with vanishing boundary values u|∂Ω = 0 for any given initial value u0 ∈ Lσ2(Ω), external force f = div F, F ∈ L2(0,...
Gespeichert in:
Veröffentlicht in: | Funkcialaj Ekvacioj 2010, Vol.53(2), pp.231-247 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider the Navier-Stokes equations in a smooth bounded domain Ω ⊂ R3 and a time interval [0, T), 0 < T ≤ ∞. It is well-known that there exists at least one global weak solution u with vanishing boundary values u|∂Ω = 0 for any given initial value u0 ∈ Lσ2(Ω), external force f = div F, F ∈ L2(0, T;L2(Ω)), and satisfying the strong energy inequality. Our aim is to extend this existence result to a much larger class of global in time "Leray-Hopf type" weak solutions u with nonzero boundary values u|∂Ω = g ∈ W1/2,2 (∂Ω). As for usual weak solutions we do not need any smallness condition on g; indeed, our generalized weak solutions u exist globally in time. The solutions will satisfy an energy estimate with exponentially increasing terms in time, but for simply connected domains the energy increases at most linearly in time. |
---|---|
ISSN: | 0532-8721 |
DOI: | 10.1619/fesi.53.231 |