Lifetime Estimation of High Power White LEDs
We have developed a high power and long lifetime white LED module which can be used in general lighting applications. Since the materials in the package are very robust at high temperatures, the device can be operated at junction temperatures (Tj) over 250°C. Moreover, the thermal resistance of the...
Gespeichert in:
Veröffentlicht in: | Journal of Light & Visual Environment 2007, Vol.31(1), pp.11-18 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have developed a high power and long lifetime white LED module which can be used in general lighting applications. Since the materials in the package are very robust at high temperatures, the device can be operated at junction temperatures (Tj) over 250°C. Moreover, the thermal resistance of the package is less than 20°C/W. Therefore the device can be operated at input power as high as 2.4 W, making it possible to shorten the duration of accelerated lifetime tests. An acceleration ratio greater than 100 has been achieved. Assuming a thermally activated degradation process and applying the Arrhenius model, the LED chip lifetime (defined as a 50% reduction in luminous flux) is determined to be 40,000 hours for a Tj of 130°C. The activation energy of the degradation process was determined to be 1.55 eV. |
---|---|
ISSN: | 0387-8805 1349-8398 |
DOI: | 10.2150/jlve.31.11 |