Formation of Dense Pore Structure by Te Addition in Bi0.5Sb1.5Te3: An Approach to Minimize Lattice Thermal Conductivity

We herein report the electronic and thermal transport properties of p-type Bi0.5Sb1.5Te3 polycrystalline bulks with dense pore structure. Dense pore structure was fabricated by vaporization of residual Te during the pressureless annealing of spark plasma sintered bulks of Te coated Bi0.5Sb1.5Te3 pow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2013-01, Vol.2013 (2013), p.1-5
Hauptverfasser: Kim, Sung Wng, Lee, Kyu Hyoung, Yang, Sang Sun, Roh, Jong Wook, Cho, Jung Young, Kim, Sang Il, Mun, Hyeona, Hasan, Syed Waqar, Choi, Soon-Mok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We herein report the electronic and thermal transport properties of p-type Bi0.5Sb1.5Te3 polycrystalline bulks with dense pore structure. Dense pore structure was fabricated by vaporization of residual Te during the pressureless annealing of spark plasma sintered bulks of Te coated Bi0.5Sb1.5Te3 powders. The lattice thermal conductivity was effectively reduced to the value of 0.35 W m−1 K−1 at 300 K mainly due to the phonon scattering by pores, while the power factor was not significantly affected. An enhanced ZT of 1.24 at 300 K was obtained in spark plasma sintered and annealed bulks of 3 wt.% Te coated Bi0.5Sb1.5Te3 by these synergetic effects.
ISSN:1687-4110
1687-4129
DOI:10.1155/2013/905389