Products of Thymine Oxygenation by a Non-heme Oxygenation Model, FeII(MeCN)62+–Ac2O–H2O2, and the Transition State Model between Oxoiron and Thymine
Oxidative thymine damage was investigated using a new non-heme oxygenation model, Fe(MeCN)62+–H2O2–Ac2O, based on high-spin Fe(MeCN)62+ in a non-aqueous solution, Ac2O–MeCN. Thymine and 1,3-dimethylthymine oxidized by the system gave the corresponding trans-thymine glycol derivatives in good yield....
Gespeichert in:
Veröffentlicht in: | Chemical & pharmaceutical bulletin 2010/06/01, Vol.58(6), pp.775-781 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oxidative thymine damage was investigated using a new non-heme oxygenation model, Fe(MeCN)62+–H2O2–Ac2O, based on high-spin Fe(MeCN)62+ in a non-aqueous solution, Ac2O–MeCN. Thymine and 1,3-dimethylthymine oxidized by the system gave the corresponding trans-thymine glycol derivatives in good yield. Thymineglycol is equivalent to an oxidative product as a measure of oxidative DNA damage in living cells. It is suggested that the activation of Fe(MeCN)62+–H2O2–Ac2O in Ac2O–MeCN forms the oxoiron O=FeIV(AcO)(MeCN)4+ as an active species via a hetelolytic two-electron mechanism, not a Haber–Weiss–Fenton-type reaction with a one-electron process by treatment with a radical scavenger. In addition, we also demonstrated the transition state (TS) for the interaction between thymine and O=FeIV(AcO)(MeCN)4+ in the triplet spin (spin multiplicity; M=3). This model of oxidative thymine damage may provide new insight into the oxidative mechanism of thymine glycol production in non-aqueous reactions of thymine. |
---|---|
ISSN: | 0009-2363 1347-5223 |
DOI: | 10.1248/cpb.58.775 |