Aeroelastic numerical approach of a wing based on the finite element and boundary element methods
The aim of this study is to provide a coupled finite element–boundary element method approach for aeroelastic investigations in incompressible flow fields. Hence, an efficient and applicable tool for aeroelastic response computations is developed which uses boundary element method to solve flow fiel...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2013-05, Vol.227 (5), p.882-894 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this study is to provide a coupled finite element–boundary element method approach for aeroelastic investigations in incompressible flow fields. Hence, an efficient and applicable tool for aeroelastic response computations is developed which uses boundary element method to solve flow fields and finite element method to analyze structural domains. In unsteady flow solution, the potential flow assumptions are considered, while the small deformations are assumed in structural dynamics behavior. Both solution procedures are tightly related by a boundary interface in a sequential coupling procedure. To illustrate the performance of aerodynamic solver for computation of three-dimensional unsteady flow configurations, lift response of a wing–body combination is computed and validated with available results in literature. Also, two test cases are presented that illustrate the accuracy of the developed tool for aeroelastic response analysis in comparison with available experimental results. |
---|---|
ISSN: | 0954-4100 2041-3025 |
DOI: | 10.1177/0954410012444379 |