Hypercontractivity and Asymptotic Behavior in Nonautonomous Kolmogorov Equations
We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I × ℝ d , where I is a right-halfline. We prove logarithmic Sobolev and Poincaré inequalities with respect to an associated evolution system of measures {μ t : t ∈ I}, and we deduce hypercont...
Gespeichert in:
Veröffentlicht in: | Communications in partial differential equations 2013-12, Vol.38 (12), p.2049-2080 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I × ℝ
d
, where I is a right-halfline. We prove logarithmic Sobolev and Poincaré inequalities with respect to an associated evolution system of measures {μ
t
: t ∈ I}, and we deduce hypercontractivity and asymptotic behavior results for the evolution operator G(t, s). |
---|---|
ISSN: | 0360-5302 1532-4133 |
DOI: | 10.1080/03605302.2013.840790 |