Hypercontractivity and Asymptotic Behavior in Nonautonomous Kolmogorov Equations

We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I × ℝ d , where I is a right-halfline. We prove logarithmic Sobolev and Poincaré inequalities with respect to an associated evolution system of measures {μ t : t ∈ I}, and we deduce hypercont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in partial differential equations 2013-12, Vol.38 (12), p.2049-2080
Hauptverfasser: Angiuli, Luciana, Lorenzi, Luca, Lunardi, Alessandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in I × ℝ d , where I is a right-halfline. We prove logarithmic Sobolev and Poincaré inequalities with respect to an associated evolution system of measures {μ t : t ∈ I}, and we deduce hypercontractivity and asymptotic behavior results for the evolution operator G(t, s).
ISSN:0360-5302
1532-4133
DOI:10.1080/03605302.2013.840790