Pharmacokinetics of Chitobiose and Chitotriose Administered Intravenously or Orally to Rats

Chitooligosaccharides have attracted much attention as new biomedical materials. The biologic availability of each of these chitooligosaccharides, however, has not yet been studied. In the present study, we found that chitobiose and chitotriose appeared in the blood of rats with maximum plasma conce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological & Pharmaceutical Bulletin 2005, Vol.28(3), pp.545-548
Hauptverfasser: Chen, An-Shu, Taguchi, Tadao, Okamoto, Hirokazu, Danjo, Kazumi, Sakai, Kazuo, Matahira, Yoshiharu, Wang, Min-Wei, Miwa, Ichitomo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chitooligosaccharides have attracted much attention as new biomedical materials. The biologic availability of each of these chitooligosaccharides, however, has not yet been studied. In the present study, we found that chitobiose and chitotriose appeared in the blood of rats with maximum plasma concentrations at around 1 h after administration when given orally at a dose of 30 mg/kg. However, chitotetraose and chitopentaose did not appear in the blood when given at a dose of 300 mg/kg. Pharmacokinetic analysis of chitobiose and chitotriose after intravenous administration at 100 mg/kg revealed that both sugars were eliminated from the body following a one-compartment model and that the former relative to the latter was higher for both the total body clearance (224±43 vs. 155±26 ml/h/kg) and the distribution volume (107±15 vs. 65±9 ml/kg). The absolute oral bioavailability of chitobiose was higher than that of chitotriose at all doses (30, 100, and 300 mg/kg) examined. The first-order absorption rate constants for chitobiose and chitotriose at all doses were less than 1.0 h−1 and smaller than the elimination rate constants (2.2±0.3, 2.7±0.1 h−1, respectively). The absorption was slow, resulting in flip-flop kinetics. This study indicates that among various chitooligosaccharides, only chitobiose and chitotriose can be appreciably absorbed from the gastrointestinal tract.
ISSN:0918-6158
1347-5215
DOI:10.1248/bpb.28.545