Fluorescence Response Mechanism of D-Glucose Selectivity for Supramolecular Probes Composed of Phenylboronic-acid-modified [beta]-Cyclodextrin and Styrylpyridinium Dyes

Supramolecular complex formation of phenylboronic-acid-modified β-cyclodextrin (1) with 1-methyl-4-(4-dimethylaminostyryl)pyridinium (C1SP) in aqueous solutions containing saccharides was fully clarified to gain an insight into the observed D-glucose (D-glc) selectivity of a supramolecular fluoresce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical sciences 2007-10, Vol.23 (10), p.1167
Hauptverfasser: SUZUKI, Iwao, YAMAUCHI, Akiyo, SAKASHITA, Yoshiko, HIROSE, Kazuaki, MIURA, Takashi, HAYASHITA, Takashi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Supramolecular complex formation of phenylboronic-acid-modified β-cyclodextrin (1) with 1-methyl-4-(4-dimethylaminostyryl)pyridinium (C1SP) in aqueous solutions containing saccharides was fully clarified to gain an insight into the observed D-glucose (D-glc) selectivity of a supramolecular fluorescent probe composed of 1 and the 1-heptyl analogue of C1SP (Chem. Commun., 2006, 4319). At pH 9.6, where 1 was in its anionic form, both the stability and the fluorescence of the 1/C1SP complex were reduced by the formation of boronate esters of 1 with saccharides. Among the saccharides, D-glc had the smallest effect on destabilization of the 1/C1SP complex, almost completely retaining the fluorescence of the 1/C1SP complex that was reduced by other saccharides by approximately 2/3. Under neutral conditions, D-glc enhanced the fluorescence of the 1/C1SP complex by increasing the fraction of anionic 1 while minimally decreasing the stability and fluorescence of the 1/C1SP complex. Although other saccharides also increased the fraction of the anionic 1, their relatively large effects on the destabilization and reduction of fluorescence of the 1/C1SP complex limited the enhancement of the fluorescence of the 1-C1SP system under neutral conditions.
ISSN:0910-6340
1348-2246