ON CLASS NUMBERS OF QUADRATIC FIELDS WITH PRIME DISCRIMINANT AND CHARACTER SUMS

We investigate the values of Dirichlet L-functions L(s, χp) at s = 1 as p runs through the primes in an arithmetic progression, where χp denotes the character given by Legendre' s symbol (•/p). We show that the numbers hQ(√-p)/√p exist densely in the positive real numbers, where hQ(√-p) is the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kyushu Journal of Mathematics 2012, Vol.66(1), pp.21-34
Hauptverfasser: MISHOU, Hidehiko, NAGOSHI, Hirofumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the values of Dirichlet L-functions L(s, χp) at s = 1 as p runs through the primes in an arithmetic progression, where χp denotes the character given by Legendre' s symbol (•/p). We show that the numbers hQ(√-p)/√p exist densely in the positive real numbers, where hQ(√-p) is the class number of the quadratic field Q(√-p).We also give a quantitative result for the problem of Ayoub, Chowla and Walum [ACW] about the character sum Σp -1n=1nk(n/p).
ISSN:1340-6116
1883-2032
DOI:10.2206/kyushujm.66.21