ON CLASS NUMBERS OF QUADRATIC FIELDS WITH PRIME DISCRIMINANT AND CHARACTER SUMS
We investigate the values of Dirichlet L-functions L(s, χp) at s = 1 as p runs through the primes in an arithmetic progression, where χp denotes the character given by Legendre' s symbol (•/p). We show that the numbers hQ(√-p)/√p exist densely in the positive real numbers, where hQ(√-p) is the...
Gespeichert in:
Veröffentlicht in: | Kyushu Journal of Mathematics 2012, Vol.66(1), pp.21-34 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the values of Dirichlet L-functions L(s, χp) at s = 1 as p runs through the primes in an arithmetic progression, where χp denotes the character given by Legendre' s symbol (•/p). We show that the numbers hQ(√-p)/√p exist densely in the positive real numbers, where hQ(√-p) is the class number of the quadratic field Q(√-p).We also give a quantitative result for the problem of Ayoub, Chowla and Walum [ACW] about the character sum Σp -1n=1nk(n/p). |
---|---|
ISSN: | 1340-6116 1883-2032 |
DOI: | 10.2206/kyushujm.66.21 |