Faster Subset Selection for Matrices and Applications

We study the following problem of subset selection for matrices: given a matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$ ($m > n$) and a sampling parameter $k$ ($n \le k \le m$), select a subset of $k$ columns from $\mathbf{X}$ such that the pseudoinverse of the sampled matrix has as small a norm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 2013-01, Vol.34 (4), p.1464-1499
Hauptverfasser: Avron, Haim, Boutsidis, Christos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the following problem of subset selection for matrices: given a matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$ ($m > n$) and a sampling parameter $k$ ($n \le k \le m$), select a subset of $k$ columns from $\mathbf{X}$ such that the pseudoinverse of the sampled matrix has as small a norm as possible. In this work, we focus on the Frobenius and the spectral matrix norms. We describe several novel (deterministic and randomized) approximation algorithms for this problem with approximation bounds that are optimal up to constant factors. Additionally, we show that the combinatorial problem of finding a low-stretch spanning tree in an undirected graph corresponds to subset selection, and discuss various implications of this reduction. [PUBLICATION ABSTRACT]
ISSN:0895-4798
1095-7162
DOI:10.1137/120867287