Faster Subset Selection for Matrices and Applications
We study the following problem of subset selection for matrices: given a matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$ ($m > n$) and a sampling parameter $k$ ($n \le k \le m$), select a subset of $k$ columns from $\mathbf{X}$ such that the pseudoinverse of the sampled matrix has as small a norm...
Gespeichert in:
Veröffentlicht in: | SIAM journal on matrix analysis and applications 2013-01, Vol.34 (4), p.1464-1499 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the following problem of subset selection for matrices: given a matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$ ($m > n$) and a sampling parameter $k$ ($n \le k \le m$), select a subset of $k$ columns from $\mathbf{X}$ such that the pseudoinverse of the sampled matrix has as small a norm as possible. In this work, we focus on the Frobenius and the spectral matrix norms. We describe several novel (deterministic and randomized) approximation algorithms for this problem with approximation bounds that are optimal up to constant factors. Additionally, we show that the combinatorial problem of finding a low-stretch spanning tree in an undirected graph corresponds to subset selection, and discuss various implications of this reduction. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0895-4798 1095-7162 |
DOI: | 10.1137/120867287 |