Study on the Optimize Strategies of Gene Expression Programming

The purpose of this paper is to improve the efficiency of the Gene Expression Programming (GEP) algorithm. The GEP algorithm is an evolutionary computation. It inherits the characteristics of Genetic Algorithm and Genetic Programming. Through its own characteristics, the GEP algorithm can get the op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-09, Vol.432, p.565-570
Hauptverfasser: Guan, Ben Bo, Guan, Xing Jian, Gao, Xin Wen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this paper is to improve the efficiency of the Gene Expression Programming (GEP) algorithm. The GEP algorithm is an evolutionary computation. It inherits the characteristics of Genetic Algorithm and Genetic Programming. Through its own characteristics, the GEP algorithm can get the optimal solution of the complicated problem. So, the GEP algorithm has achieved good results in many areas. However, there are also some inevitable drawbacks about the GEP algorithm itself. This paper proposes 5 deficiencies aspects of the GEP algorithm (expression meaning, fitness calculation, local convergence, variable selection, genetic operations, selection of genetic operation rates), and gives the corresponding solutions.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.432.565