Design of Robust Predictive Control Laws Using Set Membership Identified Models

This paper investigates the robust design of nonlinear model predictive control (NMPC) laws that employ approximated models, derived directly from process input‐output data. In particular, a nonlinear set membership (NSM) identification technique is used to obtain a system model and a bound of the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Asian journal of control 2013-11, Vol.15 (6), p.1714-1722
Hauptverfasser: Canale, M., Fagiano, L., Signorile, M.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the robust design of nonlinear model predictive control (NMPC) laws that employ approximated models, derived directly from process input‐output data. In particular, a nonlinear set membership (NSM) identification technique is used to obtain a system model and a bound of the related uncertainty. The latter is used to carry out a robust control design, via a min‐max formulation of the optimal control problem underlying the NMPC methodology. A numerical example with a nonlinear oscillator shows the effectiveness of the proposed approach.
ISSN:1561-8625
1934-6093
DOI:10.1002/asjc.560