Thermodynamic Simulation and Optimum Design of Valve Train for Cam Engine with the Counter-Position Placement

To control the inertial forces and moments, the new type of the reciprocating cam engine with counter-position placement has been invented. Such a thermodynamic model based on the kinematic and dynamic analysis is developed and the engine performance is simulated. Under the same structural design pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2011-07, Vol.66-68, p.1234-1239
Hauptverfasser: Zhou, Qi Zheng, Wang, De Shi, Gao, Sheng Yao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To control the inertial forces and moments, the new type of the reciprocating cam engine with counter-position placement has been invented. Such a thermodynamic model based on the kinematic and dynamic analysis is developed and the engine performance is simulated. Under the same structural design parameters, the counter-position placement cam engine would have the inadequate work due to the increase of throttle loss. Then effects of the gas distributions to the dynamic performance of the engine are researched. Six variables are selected to optimize maximum average indicated power and the minimum indicated specific consumption with the method of discrete variable gridding. The results indicate that: (a) The new engine structure design can present advantage of excitation forces balance. (b) The structural design parameters and the thermal efficiency of the engine should be optimized especially those of the valve actuating mechanism to achieved desired power. (c) The parameters optimized of valve train can conform to the requirements of speed and economy, and it is feasible and reasonable to put forward the scheme of cam engine with the counter-position placement.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.66-68.1234