The Improved Genetic Algorithm for Multi-Objective Flexible Job Shop Scheduling Problem
To solve the multi-objective flexible job shop scheduling problem, an improved non-dominated sorting genetic algorithm is proposed. Multi-objective mathematical model is established, four objectives, makespan, maximal workload, total workload and total tardiness are considered together. In this pape...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2011-07, Vol.66-68, p.870-875 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To solve the multi-objective flexible job shop scheduling problem, an improved non-dominated sorting genetic algorithm is proposed. Multi-objective mathematical model is established, four objectives, makespan, maximal workload, total workload and total tardiness are considered together. In this paper a dual coding method is employed, and infeasible solutions were avoided by new crossover and mutation methods. Pareto optimal set was taken to deal with multi-objective optimization problem, in order to reduce computational complexity, the non-dominated sorting method was improved. The niche technology is adopted to increase the diversity of solutions, and a new self adaptive mutation rate computing method is designed. The proposed algorithm is tested on some instances, and the computation results demonstrate the superiority of the algorithm. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.66-68.870 |