Fault Diagnosis Method Based on Supervised Incremental Local Tangent Space Alignment and SVM

To enhance the effect of fault diagnosis, a new fualt diagnosis method based on supervised incremental local tangent space alignment (SILTSA) and support vector machine (SVM) is proposed. The supervised learning approach is embedded into the incremental local tangent space alignment algorithm, to re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2010-10, Vol.34-35, p.1233-1237
Hauptverfasser: Wang, Guang Bin, He, Yu Hui, Zhao, Xian Qiong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To enhance the effect of fault diagnosis, a new fualt diagnosis method based on supervised incremental local tangent space alignment (SILTSA) and support vector machine (SVM) is proposed. The supervised learning approach is embedded into the incremental local tangent space alignment algorithm, to realize fault feature extraction and new data processing for equipment fault signal, and then correctly classify the faults by non-linear support vector machines. The experiment result for roller bearing fault diagnosis shows that SILTSA-SVM method has better diagnosis effect to related methods
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.34-35.1233