Hybrid Mean Particle Swarm Optimization Algorithm for Permutation Flow Shop Scheduling Problem

This paper presents a new hybrid mean particle swarm optimization algorithm with improved NEH heuristic approach and local search strategies by using an immune mechanism. This hybrid mean particle swarm optimization algorithm is used for permutation flow shop scheduling problems. Finally, twenty-fiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2011-01, Vol.44-47, p.270-274
Hauptverfasser: Huang, Zheng Xin, Gong, Qiao Qiao, Du, Yan Lian, Zhou, Yong Quan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new hybrid mean particle swarm optimization algorithm with improved NEH heuristic approach and local search strategies by using an immune mechanism. This hybrid mean particle swarm optimization algorithm is used for permutation flow shop scheduling problems. Finally, twenty-five problems are used to test the performance of the algorithm, the experimental results show that the proposed approach is an effective and practical.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.44-47.270