Model Updating of a Steel Truss Based on Artificial Neural Networks

Based on the artificial neural network, the parameters of a steel truss are identified. And the finite element model of truss is corrected. In order to improve the efficiency of model updating by artificial neural networks, the momentum is introduced into the back propagation algorithm. Based on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-01, Vol.121-126, p.1363-1366
Hauptverfasser: Wang, Huan Ding, Chen, Shao Feng, Zhang, Shi Lei, Wang, Wei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on the artificial neural network, the parameters of a steel truss are identified. And the finite element model of truss is corrected. In order to improve the efficiency of model updating by artificial neural networks, the momentum is introduced into the back propagation algorithm. Based on the theory of probability and mathematical statistics, the expectation confidence interval of the measured deflections and strains is obtained. In this way, the samples to train the neural network are optimized. The numerical results show that the back propagation neural network proposed on this paper is able to correct the finite element model of the truss effectively.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.121-126.1363