An Efficient Method for Solder Joint Inspection Based on Statistical Learning

To improve the performance of current solder joint inspection method, an efficient method based on statistical learning is proposed in this paper. In the method, the solder was divided into several sub-regions to determine the defect type. To resolve imbalance problem, an improved over-sampling algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-01, Vol.121-126, p.4931-4935
Hauptverfasser: Xie, Hong Wei, Zhang, Xian Min, Kuang, Yong Cong, Ouyang, Gao Fei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To improve the performance of current solder joint inspection method, an efficient method based on statistical learning is proposed in this paper. In the method, the solder was divided into several sub-regions to determine the defect type. To resolve imbalance problem, an improved over-sampling algorithm was proposed in which the synthetics samples are generated between the boundary samples and their neighbors. AdaBoost was used for feature selection and classification for every sub-region. Experiments results showed that the defects of solder joints can be identified properly using the proposed algorithm.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.121-126.4931