Anomaly Detection in Hyperspectral Imagery Based on Spectral Gradient and LLE
The local linear embedding algorithm(LLE) is applied into the anomaly detection algorithm on the basis of the feature analysis of the hyperspectral data. Then, to deal with the problem of declining capacity of identifying the neighborhood caused by the Euclidean distance, an improved LLE algorithm i...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2012-01, Vol.121-126, p.720-724 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 724 |
---|---|
container_issue | |
container_start_page | 720 |
container_title | Applied Mechanics and Materials |
container_volume | 121-126 |
creator | Li, Zhi Yong Sun, Ji Xiang Wang, Liang Liang |
description | The local linear embedding algorithm(LLE) is applied into the anomaly detection algorithm on the basis of the feature analysis of the hyperspectral data. Then, to deal with the problem of declining capacity of identifying the neighborhood caused by the Euclidean distance, an improved LLE algorithm is developed. The improved LLE algorithm selects neighborhood pixels according to the spectral gradient, thus making the anomaly detection more robust to the changes of light and terrain. Experimental results prove the feasibility of using LLE algorithm to solve the anomaly detection problem, and the effectiveness of the algorithm in improving the detection performance. |
doi_str_mv | 10.4028/www.scientific.net/AMM.121-126.720 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1443261356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103701281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-b8cae0a0b13f0e6280fab8fdc8ef1f2e9f97245052720ac238175dd3fba85fe73</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0eEm3hHyyxQ0rqR-K4y75oKyViAawtx7EhVesEO1WVv8elIFiyGI00c3XvzAHgAaM4QYSPj8dj7FWtbVebWsVWd-NpUcSY4AgTFmcEXYABZoxEWcLJJRhSRDOeEk741dcCRRNK2Q0Yer9FiCU44QNQTG2zl7seLnSnVVc3FtYWrvtWO9-GgZM7uNnLN-16OJNeVzAonn82Kyer00VQ2grm-fIWXBu58_ruu4_A6-PyZb6O8qfVZj7NIxWO6qKSK6mRRCWmBmlGODKy5KZSXBtsiJ6YSUaSFKUkfCUVoRxnaVVRU0qeGp3REbg_-7au-Tho34ltc3A2RAqcJJQwTFMWVLOzSrnGe6eNaF29l64XGIkTUxGYil-mIjAVgakITEMxEdKDyeJsEh62PjB6_5P1f5tP9mWHpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443261356</pqid></control><display><type>article</type><title>Anomaly Detection in Hyperspectral Imagery Based on Spectral Gradient and LLE</title><source>Scientific.net Journals</source><creator>Li, Zhi Yong ; Sun, Ji Xiang ; Wang, Liang Liang</creator><creatorcontrib>Li, Zhi Yong ; Sun, Ji Xiang ; Wang, Liang Liang</creatorcontrib><description>The local linear embedding algorithm(LLE) is applied into the anomaly detection algorithm on the basis of the feature analysis of the hyperspectral data. Then, to deal with the problem of declining capacity of identifying the neighborhood caused by the Euclidean distance, an improved LLE algorithm is developed. The improved LLE algorithm selects neighborhood pixels according to the spectral gradient, thus making the anomaly detection more robust to the changes of light and terrain. Experimental results prove the feasibility of using LLE algorithm to solve the anomaly detection problem, and the effectiveness of the algorithm in improving the detection performance.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037852828</identifier><identifier>ISBN: 9783037852828</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.121-126.720</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-01, Vol.121-126, p.720-724</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-b8cae0a0b13f0e6280fab8fdc8ef1f2e9f97245052720ac238175dd3fba85fe73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1498?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Zhi Yong</creatorcontrib><creatorcontrib>Sun, Ji Xiang</creatorcontrib><creatorcontrib>Wang, Liang Liang</creatorcontrib><title>Anomaly Detection in Hyperspectral Imagery Based on Spectral Gradient and LLE</title><title>Applied Mechanics and Materials</title><description>The local linear embedding algorithm(LLE) is applied into the anomaly detection algorithm on the basis of the feature analysis of the hyperspectral data. Then, to deal with the problem of declining capacity of identifying the neighborhood caused by the Euclidean distance, an improved LLE algorithm is developed. The improved LLE algorithm selects neighborhood pixels according to the spectral gradient, thus making the anomaly detection more robust to the changes of light and terrain. Experimental results prove the feasibility of using LLE algorithm to solve the anomaly detection problem, and the effectiveness of the algorithm in improving the detection performance.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037852828</isbn><isbn>9783037852828</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkMtOwzAQRS0eEm3hHyyxQ0rqR-K4y75oKyViAawtx7EhVesEO1WVv8elIFiyGI00c3XvzAHgAaM4QYSPj8dj7FWtbVebWsVWd-NpUcSY4AgTFmcEXYABZoxEWcLJJRhSRDOeEk741dcCRRNK2Q0Yer9FiCU44QNQTG2zl7seLnSnVVc3FtYWrvtWO9-GgZM7uNnLN-16OJNeVzAonn82Kyer00VQ2grm-fIWXBu58_ruu4_A6-PyZb6O8qfVZj7NIxWO6qKSK6mRRCWmBmlGODKy5KZSXBtsiJ6YSUaSFKUkfCUVoRxnaVVRU0qeGp3REbg_-7au-Tho34ltc3A2RAqcJJQwTFMWVLOzSrnGe6eNaF29l64XGIkTUxGYil-mIjAVgakITEMxEdKDyeJsEh62PjB6_5P1f5tP9mWHpw</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Li, Zhi Yong</creator><creator>Sun, Ji Xiang</creator><creator>Wang, Liang Liang</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120101</creationdate><title>Anomaly Detection in Hyperspectral Imagery Based on Spectral Gradient and LLE</title><author>Li, Zhi Yong ; Sun, Ji Xiang ; Wang, Liang Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-b8cae0a0b13f0e6280fab8fdc8ef1f2e9f97245052720ac238175dd3fba85fe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhi Yong</creatorcontrib><creatorcontrib>Sun, Ji Xiang</creatorcontrib><creatorcontrib>Wang, Liang Liang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhi Yong</au><au>Sun, Ji Xiang</au><au>Wang, Liang Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomaly Detection in Hyperspectral Imagery Based on Spectral Gradient and LLE</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>121-126</volume><spage>720</spage><epage>724</epage><pages>720-724</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037852828</isbn><isbn>9783037852828</isbn><abstract>The local linear embedding algorithm(LLE) is applied into the anomaly detection algorithm on the basis of the feature analysis of the hyperspectral data. Then, to deal with the problem of declining capacity of identifying the neighborhood caused by the Euclidean distance, an improved LLE algorithm is developed. The improved LLE algorithm selects neighborhood pixels according to the spectral gradient, thus making the anomaly detection more robust to the changes of light and terrain. Experimental results prove the feasibility of using LLE algorithm to solve the anomaly detection problem, and the effectiveness of the algorithm in improving the detection performance.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.121-126.720</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2012-01, Vol.121-126, p.720-724 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1443261356 |
source | Scientific.net Journals |
title | Anomaly Detection in Hyperspectral Imagery Based on Spectral Gradient and LLE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomaly%20Detection%20in%20Hyperspectral%20Imagery%20Based%20on%20Spectral%20Gradient%20and%20LLE&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Li,%20Zhi%20Yong&rft.date=2012-01-01&rft.volume=121-126&rft.spage=720&rft.epage=724&rft.pages=720-724&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037852828&rft.isbn_list=9783037852828&rft_id=info:doi/10.4028/www.scientific.net/AMM.121-126.720&rft_dat=%3Cproquest_cross%3E3103701281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443261356&rft_id=info:pmid/&rfr_iscdi=true |