Anomaly Detection in Hyperspectral Imagery Based on Spectral Gradient and LLE

The local linear embedding algorithm(LLE) is applied into the anomaly detection algorithm on the basis of the feature analysis of the hyperspectral data. Then, to deal with the problem of declining capacity of identifying the neighborhood caused by the Euclidean distance, an improved LLE algorithm i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-01, Vol.121-126, p.720-724
Hauptverfasser: Li, Zhi Yong, Sun, Ji Xiang, Wang, Liang Liang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 724
container_issue
container_start_page 720
container_title Applied Mechanics and Materials
container_volume 121-126
creator Li, Zhi Yong
Sun, Ji Xiang
Wang, Liang Liang
description The local linear embedding algorithm(LLE) is applied into the anomaly detection algorithm on the basis of the feature analysis of the hyperspectral data. Then, to deal with the problem of declining capacity of identifying the neighborhood caused by the Euclidean distance, an improved LLE algorithm is developed. The improved LLE algorithm selects neighborhood pixels according to the spectral gradient, thus making the anomaly detection more robust to the changes of light and terrain. Experimental results prove the feasibility of using LLE algorithm to solve the anomaly detection problem, and the effectiveness of the algorithm in improving the detection performance.
doi_str_mv 10.4028/www.scientific.net/AMM.121-126.720
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1443261356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103701281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-b8cae0a0b13f0e6280fab8fdc8ef1f2e9f97245052720ac238175dd3fba85fe73</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0eEm3hHyyxQ0rqR-K4y75oKyViAawtx7EhVesEO1WVv8elIFiyGI00c3XvzAHgAaM4QYSPj8dj7FWtbVebWsVWd-NpUcSY4AgTFmcEXYABZoxEWcLJJRhSRDOeEk741dcCRRNK2Q0Yer9FiCU44QNQTG2zl7seLnSnVVc3FtYWrvtWO9-GgZM7uNnLN-16OJNeVzAonn82Kyer00VQ2grm-fIWXBu58_ruu4_A6-PyZb6O8qfVZj7NIxWO6qKSK6mRRCWmBmlGODKy5KZSXBtsiJ6YSUaSFKUkfCUVoRxnaVVRU0qeGp3REbg_-7au-Tho34ltc3A2RAqcJJQwTFMWVLOzSrnGe6eNaF29l64XGIkTUxGYil-mIjAVgakITEMxEdKDyeJsEh62PjB6_5P1f5tP9mWHpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443261356</pqid></control><display><type>article</type><title>Anomaly Detection in Hyperspectral Imagery Based on Spectral Gradient and LLE</title><source>Scientific.net Journals</source><creator>Li, Zhi Yong ; Sun, Ji Xiang ; Wang, Liang Liang</creator><creatorcontrib>Li, Zhi Yong ; Sun, Ji Xiang ; Wang, Liang Liang</creatorcontrib><description>The local linear embedding algorithm(LLE) is applied into the anomaly detection algorithm on the basis of the feature analysis of the hyperspectral data. Then, to deal with the problem of declining capacity of identifying the neighborhood caused by the Euclidean distance, an improved LLE algorithm is developed. The improved LLE algorithm selects neighborhood pixels according to the spectral gradient, thus making the anomaly detection more robust to the changes of light and terrain. Experimental results prove the feasibility of using LLE algorithm to solve the anomaly detection problem, and the effectiveness of the algorithm in improving the detection performance.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037852828</identifier><identifier>ISBN: 9783037852828</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.121-126.720</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-01, Vol.121-126, p.720-724</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-b8cae0a0b13f0e6280fab8fdc8ef1f2e9f97245052720ac238175dd3fba85fe73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1498?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Zhi Yong</creatorcontrib><creatorcontrib>Sun, Ji Xiang</creatorcontrib><creatorcontrib>Wang, Liang Liang</creatorcontrib><title>Anomaly Detection in Hyperspectral Imagery Based on Spectral Gradient and LLE</title><title>Applied Mechanics and Materials</title><description>The local linear embedding algorithm(LLE) is applied into the anomaly detection algorithm on the basis of the feature analysis of the hyperspectral data. Then, to deal with the problem of declining capacity of identifying the neighborhood caused by the Euclidean distance, an improved LLE algorithm is developed. The improved LLE algorithm selects neighborhood pixels according to the spectral gradient, thus making the anomaly detection more robust to the changes of light and terrain. Experimental results prove the feasibility of using LLE algorithm to solve the anomaly detection problem, and the effectiveness of the algorithm in improving the detection performance.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037852828</isbn><isbn>9783037852828</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkMtOwzAQRS0eEm3hHyyxQ0rqR-K4y75oKyViAawtx7EhVesEO1WVv8elIFiyGI00c3XvzAHgAaM4QYSPj8dj7FWtbVebWsVWd-NpUcSY4AgTFmcEXYABZoxEWcLJJRhSRDOeEk741dcCRRNK2Q0Yer9FiCU44QNQTG2zl7seLnSnVVc3FtYWrvtWO9-GgZM7uNnLN-16OJNeVzAonn82Kyer00VQ2grm-fIWXBu58_ruu4_A6-PyZb6O8qfVZj7NIxWO6qKSK6mRRCWmBmlGODKy5KZSXBtsiJ6YSUaSFKUkfCUVoRxnaVVRU0qeGp3REbg_-7au-Tho34ltc3A2RAqcJJQwTFMWVLOzSrnGe6eNaF29l64XGIkTUxGYil-mIjAVgakITEMxEdKDyeJsEh62PjB6_5P1f5tP9mWHpw</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Li, Zhi Yong</creator><creator>Sun, Ji Xiang</creator><creator>Wang, Liang Liang</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120101</creationdate><title>Anomaly Detection in Hyperspectral Imagery Based on Spectral Gradient and LLE</title><author>Li, Zhi Yong ; Sun, Ji Xiang ; Wang, Liang Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-b8cae0a0b13f0e6280fab8fdc8ef1f2e9f97245052720ac238175dd3fba85fe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhi Yong</creatorcontrib><creatorcontrib>Sun, Ji Xiang</creatorcontrib><creatorcontrib>Wang, Liang Liang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhi Yong</au><au>Sun, Ji Xiang</au><au>Wang, Liang Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomaly Detection in Hyperspectral Imagery Based on Spectral Gradient and LLE</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>121-126</volume><spage>720</spage><epage>724</epage><pages>720-724</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037852828</isbn><isbn>9783037852828</isbn><abstract>The local linear embedding algorithm(LLE) is applied into the anomaly detection algorithm on the basis of the feature analysis of the hyperspectral data. Then, to deal with the problem of declining capacity of identifying the neighborhood caused by the Euclidean distance, an improved LLE algorithm is developed. The improved LLE algorithm selects neighborhood pixels according to the spectral gradient, thus making the anomaly detection more robust to the changes of light and terrain. Experimental results prove the feasibility of using LLE algorithm to solve the anomaly detection problem, and the effectiveness of the algorithm in improving the detection performance.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.121-126.720</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2012-01, Vol.121-126, p.720-724
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1443261356
source Scientific.net Journals
title Anomaly Detection in Hyperspectral Imagery Based on Spectral Gradient and LLE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomaly%20Detection%20in%20Hyperspectral%20Imagery%20Based%20on%20Spectral%20Gradient%20and%20LLE&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Li,%20Zhi%20Yong&rft.date=2012-01-01&rft.volume=121-126&rft.spage=720&rft.epage=724&rft.pages=720-724&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037852828&rft.isbn_list=9783037852828&rft_id=info:doi/10.4028/www.scientific.net/AMM.121-126.720&rft_dat=%3Cproquest_cross%3E3103701281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443261356&rft_id=info:pmid/&rfr_iscdi=true