Anomaly Detection in Hyperspectral Imagery Based on Spectral Gradient and LLE

The local linear embedding algorithm(LLE) is applied into the anomaly detection algorithm on the basis of the feature analysis of the hyperspectral data. Then, to deal with the problem of declining capacity of identifying the neighborhood caused by the Euclidean distance, an improved LLE algorithm i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-01, Vol.121-126, p.720-724
Hauptverfasser: Li, Zhi Yong, Sun, Ji Xiang, Wang, Liang Liang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The local linear embedding algorithm(LLE) is applied into the anomaly detection algorithm on the basis of the feature analysis of the hyperspectral data. Then, to deal with the problem of declining capacity of identifying the neighborhood caused by the Euclidean distance, an improved LLE algorithm is developed. The improved LLE algorithm selects neighborhood pixels according to the spectral gradient, thus making the anomaly detection more robust to the changes of light and terrain. Experimental results prove the feasibility of using LLE algorithm to solve the anomaly detection problem, and the effectiveness of the algorithm in improving the detection performance.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.121-126.720