Condition Feature Extraction of Machine Tools Based on Wavelet Packet Energy Spectrum Analysis and Bispectrum Analysis of Current Signal

Based on the study of the characteristics of load current signal, this article develops a method to extract features that can be use to distinguish the different working status of machine tools in real-time manner. The features are extracted from wavelet packet energy spectrum and bispectrum of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-01, Vol.101-102, p.847-850
Hauptverfasser: Li, Guo Fu, Fang, Teng Fei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 850
container_issue
container_start_page 847
container_title Applied Mechanics and Materials
container_volume 101-102
creator Li, Guo Fu
Fang, Teng Fei
description Based on the study of the characteristics of load current signal, this article develops a method to extract features that can be use to distinguish the different working status of machine tools in real-time manner. The features are extracted from wavelet packet energy spectrum and bispectrum of the load current signal, and thus can take advantages of both wavelet packet transforms and bispectrum in signal analysis. Experimental results show that, compared with the features extracted from wavelet packet energy spectrum or bispectrum alone, the features extracted by applying the proposed method can provide better performance in term of identifying the machine working status.
doi_str_mv 10.4028/www.scientific.net/AMM.101-102.847
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1443259043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103687681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-5fb490f901a0ed19c3ccd48638d44adb90b118bca2e3f9cc8b40be7be438403a3</originalsourceid><addsrcrecordid>eNqNkdtKAzEQhoMHsB7eIeCdsNtkk26zl22tB7AoVPEyZLOzNrXN1iRr7Rv42EYrKHjjxTDw_8M_yXwInVGScpKJ7nq9Tr02YIOpjU4thO5gMkkpoQklWSp4fwd1aJ5nSZ-LbBcdMsL6opf1Crb3ZZCkYCw_QIfezwnJOeWig95Hja1MMI3FF6BC6wCP34JT-ktqajxRemYs4PumWXg8VB4qHJ1H9QoLCPhO6efYxhbc0wZPV6CDa5d4YNVi443HylZ4aPwfPSaPWufib_DUPEX1GO3XauHh5LsfoYeL8f3oKrm5vbweDW4SzXIRkl5d8oLUBaGKQEULzbSuuMiZqDhXVVmQklJRapUBqwutRclJCf0SOBOcMMWO0Ok2d-WalxZ8kPOmdfEBXlLOWTwX4SxODbdT2jXeO6jlypmlchtJifzEISMO-YNDRhwy4og2jZXJiCOGnG9D4j2tD6Bnv3b9P-YDgVmd-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443259043</pqid></control><display><type>article</type><title>Condition Feature Extraction of Machine Tools Based on Wavelet Packet Energy Spectrum Analysis and Bispectrum Analysis of Current Signal</title><source>Scientific.net Journals</source><creator>Li, Guo Fu ; Fang, Teng Fei</creator><creatorcontrib>Li, Guo Fu ; Fang, Teng Fei</creatorcontrib><description>Based on the study of the characteristics of load current signal, this article develops a method to extract features that can be use to distinguish the different working status of machine tools in real-time manner. The features are extracted from wavelet packet energy spectrum and bispectrum of the load current signal, and thus can take advantages of both wavelet packet transforms and bispectrum in signal analysis. Experimental results show that, compared with the features extracted from wavelet packet energy spectrum or bispectrum alone, the features extracted by applying the proposed method can provide better performance in term of identifying the machine working status.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037852593</identifier><identifier>ISBN: 9783037852590</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.101-102.847</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-01, Vol.101-102, p.847-850</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-5fb490f901a0ed19c3ccd48638d44adb90b118bca2e3f9cc8b40be7be438403a3</citedby><cites>FETCH-LOGICAL-c368t-5fb490f901a0ed19c3ccd48638d44adb90b118bca2e3f9cc8b40be7be438403a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1468?width=600</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Li, Guo Fu</creatorcontrib><creatorcontrib>Fang, Teng Fei</creatorcontrib><title>Condition Feature Extraction of Machine Tools Based on Wavelet Packet Energy Spectrum Analysis and Bispectrum Analysis of Current Signal</title><title>Applied Mechanics and Materials</title><description>Based on the study of the characteristics of load current signal, this article develops a method to extract features that can be use to distinguish the different working status of machine tools in real-time manner. The features are extracted from wavelet packet energy spectrum and bispectrum of the load current signal, and thus can take advantages of both wavelet packet transforms and bispectrum in signal analysis. Experimental results show that, compared with the features extracted from wavelet packet energy spectrum or bispectrum alone, the features extracted by applying the proposed method can provide better performance in term of identifying the machine working status.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037852593</isbn><isbn>9783037852590</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkdtKAzEQhoMHsB7eIeCdsNtkk26zl22tB7AoVPEyZLOzNrXN1iRr7Rv42EYrKHjjxTDw_8M_yXwInVGScpKJ7nq9Tr02YIOpjU4thO5gMkkpoQklWSp4fwd1aJ5nSZ-LbBcdMsL6opf1Crb3ZZCkYCw_QIfezwnJOeWig95Hja1MMI3FF6BC6wCP34JT-ktqajxRemYs4PumWXg8VB4qHJ1H9QoLCPhO6efYxhbc0wZPV6CDa5d4YNVi443HylZ4aPwfPSaPWufib_DUPEX1GO3XauHh5LsfoYeL8f3oKrm5vbweDW4SzXIRkl5d8oLUBaGKQEULzbSuuMiZqDhXVVmQklJRapUBqwutRclJCf0SOBOcMMWO0Ok2d-WalxZ8kPOmdfEBXlLOWTwX4SxODbdT2jXeO6jlypmlchtJifzEISMO-YNDRhwy4og2jZXJiCOGnG9D4j2tD6Bnv3b9P-YDgVmd-Q</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Li, Guo Fu</creator><creator>Fang, Teng Fei</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120101</creationdate><title>Condition Feature Extraction of Machine Tools Based on Wavelet Packet Energy Spectrum Analysis and Bispectrum Analysis of Current Signal</title><author>Li, Guo Fu ; Fang, Teng Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-5fb490f901a0ed19c3ccd48638d44adb90b118bca2e3f9cc8b40be7be438403a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guo Fu</creatorcontrib><creatorcontrib>Fang, Teng Fei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Guo Fu</au><au>Fang, Teng Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Condition Feature Extraction of Machine Tools Based on Wavelet Packet Energy Spectrum Analysis and Bispectrum Analysis of Current Signal</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>101-102</volume><spage>847</spage><epage>850</epage><pages>847-850</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037852593</isbn><isbn>9783037852590</isbn><abstract>Based on the study of the characteristics of load current signal, this article develops a method to extract features that can be use to distinguish the different working status of machine tools in real-time manner. The features are extracted from wavelet packet energy spectrum and bispectrum of the load current signal, and thus can take advantages of both wavelet packet transforms and bispectrum in signal analysis. Experimental results show that, compared with the features extracted from wavelet packet energy spectrum or bispectrum alone, the features extracted by applying the proposed method can provide better performance in term of identifying the machine working status.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.101-102.847</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2012-01, Vol.101-102, p.847-850
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1443259043
source Scientific.net Journals
title Condition Feature Extraction of Machine Tools Based on Wavelet Packet Energy Spectrum Analysis and Bispectrum Analysis of Current Signal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Condition%20Feature%20Extraction%20of%20Machine%20Tools%20Based%20on%20Wavelet%20Packet%20Energy%20Spectrum%20Analysis%20and%20Bispectrum%20Analysis%20of%20Current%20Signal&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Li,%20Guo%20Fu&rft.date=2012-01-01&rft.volume=101-102&rft.spage=847&rft.epage=850&rft.pages=847-850&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037852593&rft.isbn_list=9783037852590&rft_id=info:doi/10.4028/www.scientific.net/AMM.101-102.847&rft_dat=%3Cproquest_cross%3E3103687681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443259043&rft_id=info:pmid/&rfr_iscdi=true