Condition Feature Extraction of Machine Tools Based on Wavelet Packet Energy Spectrum Analysis and Bispectrum Analysis of Current Signal

Based on the study of the characteristics of load current signal, this article develops a method to extract features that can be use to distinguish the different working status of machine tools in real-time manner. The features are extracted from wavelet packet energy spectrum and bispectrum of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-01, Vol.101-102, p.847-850
Hauptverfasser: Li, Guo Fu, Fang, Teng Fei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on the study of the characteristics of load current signal, this article develops a method to extract features that can be use to distinguish the different working status of machine tools in real-time manner. The features are extracted from wavelet packet energy spectrum and bispectrum of the load current signal, and thus can take advantages of both wavelet packet transforms and bispectrum in signal analysis. Experimental results show that, compared with the features extracted from wavelet packet energy spectrum or bispectrum alone, the features extracted by applying the proposed method can provide better performance in term of identifying the machine working status.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.101-102.847