Temporal Feature Characterization via Dynamic Hidden Markov Tree
We present a novel multiscale dynamic methodology for automatic machine vision inspection aiming at characterizing temporal features of tobacco leaves. The image sequences of tobacco leaves are transformed from RGB color space to L*a*b* color space, which provides a uniform perceptual difference mea...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2012-01, Vol.128-129, p.1085-1088 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a novel multiscale dynamic methodology for automatic machine vision inspection aiming at characterizing temporal features of tobacco leaves. The image sequences of tobacco leaves are transformed from RGB color space to L*a*b* color space, which provides a uniform perceptual difference measure. The image sequences are then represented by a multiscale Dynamic Hidden Markov tree (DHMT), which models not only inter and intra scale dependences of wavelet coefficients, but also temporal dependences of foreground/background observational properties. Experimental results demonstrate temporal consistent mean and covariance values of model coefficients in a* color channel. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.128-129.1085 |