Pattern Recognition of Chatter Gestation Based on Hybrid PCA-SVM

To distinguish chatter gestation, chatter recognition method based on hybrid PCA(Principal Compenent Analysis) and SVM(Support Vector Machine) is proposed for dynamic patterns of chatter gestation in cutting process. At first, FFT features are extracted from the vibration signal of cutting process,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-01, Vol.120, p.190-194
Hauptverfasser: Feng, Chang Jian, Shao, Qiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To distinguish chatter gestation, chatter recognition method based on hybrid PCA(Principal Compenent Analysis) and SVM(Support Vector Machine) is proposed for dynamic patterns of chatter gestation in cutting process. At first, FFT features are extracted from the vibration signal of cutting process, then FFT vectors are presorted and introduced to PCA-SVM for machine learning and classification. Finally the results of chatter gestation recognition and chatter prediction experiments are presented and show that the method proposed is effective.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.120.190