Modeling of Buoyancy-Driven Natural Ventilation in Workshop: Optimization of Distance between Heat Source and Ground
Natural ventilation is suitable for application to workshops with heat sources to keep good indoor air quality at lower energy cost. In this paper, the authors numerically investigated the buoyancy-driven natural ventilation in a workshop with heat source based on computational fluid dynamics (CFD)...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2012-01, Vol.170-173, p.2579-2582 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Natural ventilation is suitable for application to workshops with heat sources to keep good indoor air quality at lower energy cost. In this paper, the authors numerically investigated the buoyancy-driven natural ventilation in a workshop with heat source based on computational fluid dynamics (CFD) method. The effect of the distance between heat source and ground on the air flow and temperature distribution was examined. Results showed that the average air temperature at operation zone could be effectively reduced when the distance between heat source and ground increased. The temperature field in the upper zone of the workshop was improved by diminishing the hot air zone near the ceiling and the waste heat directly going into the operation zone decreased when the distance between heat source and ground increased. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.170-173.2579 |