Research on Numerical Simulation Method for 3D Complex Flow in Rotating Machinery

A numerical simulation method with gas-structure interaction to analyze 3D complex flow in rotating machinery was presented and the effects with different aerodynamic turbulence model for gas-structure interaction was also presented. The blades are an important component in rotating machinery. Gas f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-11, Vol.226-228, p.52-55
Hauptverfasser: Ba, De Сhun, An, Wei, Tan, Zhen, Du, Guang Yu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A numerical simulation method with gas-structure interaction to analyze 3D complex flow in rotating machinery was presented and the effects with different aerodynamic turbulence model for gas-structure interaction was also presented. The blades are an important component in rotating machinery. Gas flow is unsteady three-dimensional turbulence motion with transient and anisotropic. Then the gas flow and the vibration of rotating blades interfere with each other, resulting in a complex coupling effect. It affects the machine efficiency directly. For discussing the effects on flow field of the coupling field, the blade model was built. And flow around the blades was simulated by gas-structure interaction with three turbulence models respectively. The turbulence models were standard κ-ε, renormalization group κ-ε and Smagorinsky LES. A feasible method was provided for flow field analysis in rotating machinery.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.226-228.52