Visual Tracking Using Combining Motion Constraint Model and Online Multiple Instance Boost Random Ferns

Video object tracking is essential algorithm for computer vision applications. An object tracking algorithm using combining motion constraints model and online multiple instance boost random ferns is proposed, which use IIR filter to obtain online learning for random ferns, and the random ferns are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-01, Vol.263-266, p.2385-2392
Hauptverfasser: Huang, Ye Jue, Zheng, He Rong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Video object tracking is essential algorithm for computer vision applications. An object tracking algorithm using combining motion constraints model and online multiple instance boost random ferns is proposed, which use IIR filter to obtain online learning for random ferns, and the random ferns are selected by online multiple instance boosting to construct classifier of online multiple instance boost random ferns. To reduce effects of tracking error accumulation, object motion constraint model is constructed to constrain the results classified by online multiple instance boost random ferns to locate object correctly, and construct positive and negative set to online update the classifier. The experiment shows that the proposed method achieves competitive detection results, which are comparable with state-of-the-art methods.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.263-266.2385