Self-Tuning Fusion Kalman Filter for ARMA Signals
For the single-channel autoregressive moving average (ARMA) signals with multisensor, and with unknown model parameters and noise variances, the local estimators of unknown model parameters and noise variances are obtained by the recursive instrumental variable (RIV) algorithm and correlation method...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2012-11, Vol.229-231, p.1768-1771 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1771 |
---|---|
container_issue | |
container_start_page | 1768 |
container_title | Applied Mechanics and Materials |
container_volume | 229-231 |
creator | Yan, Man Liu, Wen Qiang Han, Na Tao, Gui Li |
description | For the single-channel autoregressive moving average (ARMA) signals with multisensor, and with unknown model parameters and noise variances, the local estimators of unknown model parameters and noise variances are obtained by the recursive instrumental variable (RIV) algorithm and correlation method, and the fused estimators are obtained by taking the average of the local estimators. Substituting them into the optimal fusion Kalman filter, a self-tuning fusion Kalman filter for single-channel ARMA signals is presented. A simulation example shows its effectiveness. |
doi_str_mv | 10.4028/www.scientific.net/AMM.229-231.1768 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442650081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102072571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2208-fcebf18365206ae602899e6ad84f21a3ce53aeaa797e3b4f51b0e1ea342c3ee13</originalsourceid><addsrcrecordid>eNqVkMtOwzAQRS0eEqX0HyKxREn9iuMso6oFRCskWtaWG8bFVeoUO1XF3-NQJNiyuou5OjNzELojOOOYyvHxeMxCbcF11tg6c9CNq8Uio7RMKSMZKYQ8QwMiBE0LLuk5GpWFZJgVMs8JphffM5yWjIkrdB3CFmPBCZcDRJbQmHR1cNZtktkh2NYlT7rZaZfMbNOBT0zrk-plUSVLu3G6CTfo0sSA0U8O0etsupo8pPPn-8dJNU9rSrFMTQ1rQyQTOcVCg4hvlCUI_Sa5oUSzGnKmQeuiLICtucnJGgMBzTitGQBhQ3R74u59-3GA0Klte_D9BYpwTkWOsexbk1Or9m0IHozae7vT_lMRrHp3KrpTv-5UdKeiOxXdqehO9e4iZXqidF670EH9_mfZPzhfU1N-DA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442650081</pqid></control><display><type>article</type><title>Self-Tuning Fusion Kalman Filter for ARMA Signals</title><source>Scientific.net Journals</source><creator>Yan, Man ; Liu, Wen Qiang ; Han, Na ; Tao, Gui Li</creator><creatorcontrib>Yan, Man ; Liu, Wen Qiang ; Han, Na ; Tao, Gui Li</creatorcontrib><description>For the single-channel autoregressive moving average (ARMA) signals with multisensor, and with unknown model parameters and noise variances, the local estimators of unknown model parameters and noise variances are obtained by the recursive instrumental variable (RIV) algorithm and correlation method, and the fused estimators are obtained by taking the average of the local estimators. Substituting them into the optimal fusion Kalman filter, a self-tuning fusion Kalman filter for single-channel ARMA signals is presented. A simulation example shows its effectiveness.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037855102</identifier><identifier>ISBN: 303785510X</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.229-231.1768</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-11, Vol.229-231, p.1768-1771</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Nov 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2208-fcebf18365206ae602899e6ad84f21a3ce53aeaa797e3b4f51b0e1ea342c3ee13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2034?width=600</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yan, Man</creatorcontrib><creatorcontrib>Liu, Wen Qiang</creatorcontrib><creatorcontrib>Han, Na</creatorcontrib><creatorcontrib>Tao, Gui Li</creatorcontrib><title>Self-Tuning Fusion Kalman Filter for ARMA Signals</title><title>Applied Mechanics and Materials</title><description>For the single-channel autoregressive moving average (ARMA) signals with multisensor, and with unknown model parameters and noise variances, the local estimators of unknown model parameters and noise variances are obtained by the recursive instrumental variable (RIV) algorithm and correlation method, and the fused estimators are obtained by taking the average of the local estimators. Substituting them into the optimal fusion Kalman filter, a self-tuning fusion Kalman filter for single-channel ARMA signals is presented. A simulation example shows its effectiveness.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037855102</isbn><isbn>303785510X</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkMtOwzAQRS0eEqX0HyKxREn9iuMso6oFRCskWtaWG8bFVeoUO1XF3-NQJNiyuou5OjNzELojOOOYyvHxeMxCbcF11tg6c9CNq8Uio7RMKSMZKYQ8QwMiBE0LLuk5GpWFZJgVMs8JphffM5yWjIkrdB3CFmPBCZcDRJbQmHR1cNZtktkh2NYlT7rZaZfMbNOBT0zrk-plUSVLu3G6CTfo0sSA0U8O0etsupo8pPPn-8dJNU9rSrFMTQ1rQyQTOcVCg4hvlCUI_Sa5oUSzGnKmQeuiLICtucnJGgMBzTitGQBhQ3R74u59-3GA0Klte_D9BYpwTkWOsexbk1Or9m0IHozae7vT_lMRrHp3KrpTv-5UdKeiOxXdqehO9e4iZXqidF670EH9_mfZPzhfU1N-DA</recordid><startdate>20121129</startdate><enddate>20121129</enddate><creator>Yan, Man</creator><creator>Liu, Wen Qiang</creator><creator>Han, Na</creator><creator>Tao, Gui Li</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121129</creationdate><title>Self-Tuning Fusion Kalman Filter for ARMA Signals</title><author>Yan, Man ; Liu, Wen Qiang ; Han, Na ; Tao, Gui Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2208-fcebf18365206ae602899e6ad84f21a3ce53aeaa797e3b4f51b0e1ea342c3ee13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Man</creatorcontrib><creatorcontrib>Liu, Wen Qiang</creatorcontrib><creatorcontrib>Han, Na</creatorcontrib><creatorcontrib>Tao, Gui Li</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Man</au><au>Liu, Wen Qiang</au><au>Han, Na</au><au>Tao, Gui Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Tuning Fusion Kalman Filter for ARMA Signals</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-11-29</date><risdate>2012</risdate><volume>229-231</volume><spage>1768</spage><epage>1771</epage><pages>1768-1771</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037855102</isbn><isbn>303785510X</isbn><abstract>For the single-channel autoregressive moving average (ARMA) signals with multisensor, and with unknown model parameters and noise variances, the local estimators of unknown model parameters and noise variances are obtained by the recursive instrumental variable (RIV) algorithm and correlation method, and the fused estimators are obtained by taking the average of the local estimators. Substituting them into the optimal fusion Kalman filter, a self-tuning fusion Kalman filter for single-channel ARMA signals is presented. A simulation example shows its effectiveness.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.229-231.1768</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2012-11, Vol.229-231, p.1768-1771 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1442650081 |
source | Scientific.net Journals |
title | Self-Tuning Fusion Kalman Filter for ARMA Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Tuning%20Fusion%20Kalman%20Filter%20for%20ARMA%20Signals&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Yan,%20Man&rft.date=2012-11-29&rft.volume=229-231&rft.spage=1768&rft.epage=1771&rft.pages=1768-1771&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037855102&rft.isbn_list=303785510X&rft_id=info:doi/10.4028/www.scientific.net/AMM.229-231.1768&rft_dat=%3Cproquest_cross%3E3102072571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442650081&rft_id=info:pmid/&rfr_iscdi=true |