Self-Tuning Fusion Kalman Filter for ARMA Signals

For the single-channel autoregressive moving average (ARMA) signals with multisensor, and with unknown model parameters and noise variances, the local estimators of unknown model parameters and noise variances are obtained by the recursive instrumental variable (RIV) algorithm and correlation method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-11, Vol.229-231, p.1768-1771
Hauptverfasser: Yan, Man, Liu, Wen Qiang, Han, Na, Tao, Gui Li
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the single-channel autoregressive moving average (ARMA) signals with multisensor, and with unknown model parameters and noise variances, the local estimators of unknown model parameters and noise variances are obtained by the recursive instrumental variable (RIV) algorithm and correlation method, and the fused estimators are obtained by taking the average of the local estimators. Substituting them into the optimal fusion Kalman filter, a self-tuning fusion Kalman filter for single-channel ARMA signals is presented. A simulation example shows its effectiveness.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.229-231.1768