Design of Lightweight Graded Hot Structures for Hypersonic Vehicles

New-type hypersonic vehicle will encounter significant challenges due to severe heating environments during its long-time hypersonic flying in the atmosphere. Therefore, resusable, lightweight, high thermal resistance and anti-collision are demanded for Thermal Protection System. Traditional thermal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-01, Vol.271-272, p.838-841
Hauptverfasser: Deng, Dai Ying, Lu, Qin, Jiang, Gui Qing, Zhang, Xue Jun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New-type hypersonic vehicle will encounter significant challenges due to severe heating environments during its long-time hypersonic flying in the atmosphere. Therefore, resusable, lightweight, high thermal resistance and anti-collision are demanded for Thermal Protection System. Traditional thermal protection system(TPS) can’t survive extreme thermal environments. In this paper, lightweight and integrated graded hot structures which composed of functionally graded materials (FGM) are addressed according to new thermal environment. It has been established nonlinear fundamental equations for hot structures. It is significant that gradation in material properties of hot structures allows the designer to tailor thermal response to meet variable thermal environment.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.271-272.838