Anisotropy Gas Reservoir Drainage Radius and Quantitative Well Interference Study
Unstable productivity analysis method was used to obtain the equivalent radius of 77 wells and the result shows that the equivalent radius ranges from 30 to 970m with an average value of 230m in McKittrick Hills. The difference range of the radius is mainly caused by varying formation properties, ga...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2013-01, Vol.275-277, p.1285-1291 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Unstable productivity analysis method was used to obtain the equivalent radius of 77 wells and the result shows that the equivalent radius ranges from 30 to 970m with an average value of 230m in McKittrick Hills. The difference range of the radius is mainly caused by varying formation properties, gas saturation, production time, etc. Permeability anisotropy changes the drainage from round to ellipse. The major axis and the minor axis of the ellipse are determined by the ratio of major and minor permeability. Current pressure distribution was obtained and was found to be consistent with the modified drainage results, which demonstrates that the unstable productivity analysis method is applicable in the study of gas well drainage radius. An interference well and an observation well’s model was constructed to study well interference quantitatively. When the well spacing is larger than 750m, the productivity will be reduced by 20%. The production rate of interference well is more sensitive to the cumulative production of observation well, when the production rate of interference well is below 16.8×104m3/d. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.275-277.1285 |