OPTIMAL A PRIORI ERROR ESTIMATES OF PARABOLIC OPTIMAL CONTROL PROBLEMS WITH POINTWISE CONTROL
In this paper we consider a parabolic optimal control problem with a pointwise (Dirac type) control in space, but variable in time, in two space dimensions. To approximate the problem we use the standard continuous piecewise linear approximation in space and the piecewise constant discontinuous Gale...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2013-01, Vol.51 (5), p.2797-2821 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we consider a parabolic optimal control problem with a pointwise (Dirac type) control in space, but variable in time, in two space dimensions. To approximate the problem we use the standard continuous piecewise linear approximation in space and the piecewise constant discontinuous Galerkin method in time. Despite low regularity of the state equation, we show almost optimal h2 + k convergence rate for the control in L2 norm. This result improves almost twice the previously known estimate in [W. Gong, M. Hinze, and Z. Zhou, A Priori Error Analysis for Finite Element Approximation of Parabolic Optimal Control Problems with Pointwise Control, Tech. report, 2011-07, Hamburger Beiträge zur Angewandten Mathematik, Hamburg, Germany, 2011]. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/120885772 |