Fault Knowledge Acquisition of Electronic Equipment

The difficulties of acquiring fault knowledge severely handicap the development of intelligent diagnosis system (IDS) of military electronic equipment (MEE) in our country.For MEE fault diagnosis of fault original data collection difficult situation, a new method is presented,Which auto-acquires fau...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-09, Vol.397-400, p.1145-1147
Hauptverfasser: Li, Dan, Wang, Lu, Zhang, Hong, Zou, Feng Hua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1147
container_issue
container_start_page 1145
container_title Applied Mechanics and Materials
container_volume 397-400
creator Li, Dan
Wang, Lu
Zhang, Hong
Zou, Feng Hua
description The difficulties of acquiring fault knowledge severely handicap the development of intelligent diagnosis system (IDS) of military electronic equipment (MEE) in our country.For MEE fault diagnosis of fault original data collection difficult situation, a new method is presented,Which auto-acquires fault knowledge by simulating all possible faults of equipment.The approach presented in this paper makes the work of KA engineer easier, and makes fast diagnosis fault location and fault reasons possible.
doi_str_mv 10.4028/www.scientific.net/AMM.397-400.1145
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442190207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099807891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-2b6ffa5f0b58cba810492ef1aa5f375f823933f6f867bdd10275320b31c5034c3</originalsourceid><addsrcrecordid>eNqVkF1LwzAYhYMfoJv-h4KX0u7NV5tejtGpuOGNXoc2SzSja7ckpfjvzZygt1698J7DOYcHoXsMGQMiZuM4Zl5Z3QVrrMo6HWbz9TqjZZEygAxjxs_QNc5zkhZMkHM0oUALwQWj_OJbgLSkNL9CE--3ADnDTFwjuqyHNiTPXT-2evOuk7k6DNbbYPsu6U1StVoF13dWJVUU9rs44AZdmrr1-vbnTtHbsnpdPKarl4enxXyVKgo8pKTJjam5gYYL1dQCAyuJNriOP1pwIwiNg0xuRF40mw0GUnBKoKFYcaBM0Sm6O-XuXX8YtA9y2w-ui5USM0ZwCQSK6FqcXMr13jtt5N7ZXe0-JQZ5RCcjOvmLTkZ0MqKTEV3UQR7RxZTqlBJc3fmg1cefsn_kfAFpC36v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442190207</pqid></control><display><type>article</type><title>Fault Knowledge Acquisition of Electronic Equipment</title><source>Scientific.net Journals</source><creator>Li, Dan ; Wang, Lu ; Zhang, Hong ; Zou, Feng Hua</creator><creatorcontrib>Li, Dan ; Wang, Lu ; Zhang, Hong ; Zou, Feng Hua</creatorcontrib><description>The difficulties of acquiring fault knowledge severely handicap the development of intelligent diagnosis system (IDS) of military electronic equipment (MEE) in our country.For MEE fault diagnosis of fault original data collection difficult situation, a new method is presented,Which auto-acquires fault knowledge by simulating all possible faults of equipment.The approach presented in this paper makes the work of KA engineer easier, and makes fast diagnosis fault location and fault reasons possible.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037858435</identifier><identifier>ISBN: 9783037858431</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.397-400.1145</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2013-09, Vol.397-400, p.1145-1147</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2658?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Zou, Feng Hua</creatorcontrib><title>Fault Knowledge Acquisition of Electronic Equipment</title><title>Applied Mechanics and Materials</title><description>The difficulties of acquiring fault knowledge severely handicap the development of intelligent diagnosis system (IDS) of military electronic equipment (MEE) in our country.For MEE fault diagnosis of fault original data collection difficult situation, a new method is presented,Which auto-acquires fault knowledge by simulating all possible faults of equipment.The approach presented in this paper makes the work of KA engineer easier, and makes fast diagnosis fault location and fault reasons possible.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037858435</isbn><isbn>9783037858431</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkF1LwzAYhYMfoJv-h4KX0u7NV5tejtGpuOGNXoc2SzSja7ckpfjvzZygt1698J7DOYcHoXsMGQMiZuM4Zl5Z3QVrrMo6HWbz9TqjZZEygAxjxs_QNc5zkhZMkHM0oUALwQWj_OJbgLSkNL9CE--3ADnDTFwjuqyHNiTPXT-2evOuk7k6DNbbYPsu6U1StVoF13dWJVUU9rs44AZdmrr1-vbnTtHbsnpdPKarl4enxXyVKgo8pKTJjam5gYYL1dQCAyuJNriOP1pwIwiNg0xuRF40mw0GUnBKoKFYcaBM0Sm6O-XuXX8YtA9y2w-ui5USM0ZwCQSK6FqcXMr13jtt5N7ZXe0-JQZ5RCcjOvmLTkZ0MqKTEV3UQR7RxZTqlBJc3fmg1cefsn_kfAFpC36v</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Li, Dan</creator><creator>Wang, Lu</creator><creator>Zhang, Hong</creator><creator>Zou, Feng Hua</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130901</creationdate><title>Fault Knowledge Acquisition of Electronic Equipment</title><author>Li, Dan ; Wang, Lu ; Zhang, Hong ; Zou, Feng Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-2b6ffa5f0b58cba810492ef1aa5f375f823933f6f867bdd10275320b31c5034c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Zou, Feng Hua</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dan</au><au>Wang, Lu</au><au>Zhang, Hong</au><au>Zou, Feng Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Knowledge Acquisition of Electronic Equipment</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>397-400</volume><spage>1145</spage><epage>1147</epage><pages>1145-1147</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037858435</isbn><isbn>9783037858431</isbn><abstract>The difficulties of acquiring fault knowledge severely handicap the development of intelligent diagnosis system (IDS) of military electronic equipment (MEE) in our country.For MEE fault diagnosis of fault original data collection difficult situation, a new method is presented,Which auto-acquires fault knowledge by simulating all possible faults of equipment.The approach presented in this paper makes the work of KA engineer easier, and makes fast diagnosis fault location and fault reasons possible.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.397-400.1145</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2013-09, Vol.397-400, p.1145-1147
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1442190207
source Scientific.net Journals
title Fault Knowledge Acquisition of Electronic Equipment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Knowledge%20Acquisition%20of%20Electronic%20Equipment&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Li,%20Dan&rft.date=2013-09-01&rft.volume=397-400&rft.spage=1145&rft.epage=1147&rft.pages=1145-1147&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037858435&rft.isbn_list=9783037858431&rft_id=info:doi/10.4028/www.scientific.net/AMM.397-400.1145&rft_dat=%3Cproquest_cross%3E3099807891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442190207&rft_id=info:pmid/&rfr_iscdi=true