Universally Composable Client-to-Client General Authenticated Key Exchange
In large-scale networks, users want to be able to communicate securely with each other over a channel that is unreliable. When the existing 2- and 3-party protocols are realized in this situation, there are several problems: a client must hold many passwords and the load on the server concerning pas...
Gespeichert in:
Veröffentlicht in: | IPSJ Digital Courier 2007/09/15, Vol.3, pp.555-570 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In large-scale networks, users want to be able to communicate securely with each other over a channel that is unreliable. When the existing 2- and 3-party protocols are realized in this situation, there are several problems: a client must hold many passwords and the load on the server concerning password management is heavy. In this paper, we define a new ideal client-to-client general authenticated key exchange functionality, where arbitrary 2-party key exchange protocols are applicable to protocols between the client and server and between servers. We also propose a client-to-client general authenticated key exchange protocol C2C-GAKE as a general form of the client-to-client model, and a client-to-client hybrid authenticated key exchange protocol C2C-HAKE as an example protocol of C2C-GAKE to solve the above problems. In C2C-HAKE, a server shares passwords only with clients in the same realm respectively, public/private keys are used between respective servers, and two clients between different realms share a final session key via the respective servers. Thus, with regard to password management in C2C-HAKE, the load on the server can be distributed to several servers. In addition, we prove that C2C-HAKE securely realizes the above functionality. C2C-HAKE is the first client-to-client hybrid authenticated key exchange protocol that is secure in a universally composable framework with a security-preserving composition property. |
---|---|
ISSN: | 1349-7456 1349-7456 |
DOI: | 10.2197/ipsjdc.3.555 |