Heuristic dynamic programming using echo state network as online trainable adaptive critic

SUMMARYThe present paper proposes an implementation of a relatively new recurrent neural network architecture—the echo state network (ESN)–within the frame of heuristic dynamic programming. The ESN is trained online to estimate the utility function and to adapt the control policy of an embodied agen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of adaptive control and signal processing 2013-10, Vol.27 (10), p.902-914
Hauptverfasser: Koprinkova-Hristova, Petia, Oubbati, Mohamed, Palm, Günther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SUMMARYThe present paper proposes an implementation of a relatively new recurrent neural network architecture—the echo state network (ESN)–within the frame of heuristic dynamic programming. The ESN is trained online to estimate the utility function and to adapt the control policy of an embodied agent. With the advantage of an easy training algorithm, the ESN architecture offers a simple way to calculate the derivatives required for adapting the controller. Experimental results are provided to validate the proposed learning approach. Copyright © 2012 John Wiley & Sons, Ltd.
ISSN:0890-6327
1099-1115
DOI:10.1002/acs.2364