On a problem of Ishmukhametov

Given a d.c.e. degree d , consider the d.c.e. sets in d and the corresponding degrees of their Lachlan sets. Ishmukhametov provided a systematic investigation of such degrees, and proved that for a given d.c.e. degree d > 0 , the class of its c.e. predecessors in which d is c.e., denoted as R [d]...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for mathematical logic 2013-11, Vol.52 (7-8), p.733-741
Hauptverfasser: Fang, Chengling, Wu, Guohua, Yamaleev, Mars
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a d.c.e. degree d , consider the d.c.e. sets in d and the corresponding degrees of their Lachlan sets. Ishmukhametov provided a systematic investigation of such degrees, and proved that for a given d.c.e. degree d > 0 , the class of its c.e. predecessors in which d is c.e., denoted as R [d] , can consist of either just one element, or an interval of c.e. degrees. After this, Ishmukhametov asked whether there exists a d.c.e. degree d for which the class R[d] has no minimal element. We give a positive answer to this question.
ISSN:0933-5846
1432-0665
DOI:10.1007/s00153-013-0340-0