Interest Point Detection Based on Stochastically Derived Stability
We propose a novel framework called StochasticSIFT for detecting interest points (IPs) in video sequences. The proposed framework incorporates a stochastic model considering the temporal dynamics of videos into the SIFT detector to improve robustness against fluctuations inherent to video signals. I...
Gespeichert in:
Veröffentlicht in: | Information and Media Technologies 2012, Vol.7(1), pp.256-267 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 267 |
---|---|
container_issue | 1 |
container_start_page | 256 |
container_title | Information and Media Technologies |
container_volume | 7 |
creator | Watchareeruetai, Ukrit Kimura, Akisato Bao, Robert Cheng Kawanishi, Takahito Kashino, Kunio |
description | We propose a novel framework called StochasticSIFT for detecting interest points (IPs) in video sequences. The proposed framework incorporates a stochastic model considering the temporal dynamics of videos into the SIFT detector to improve robustness against fluctuations inherent to video signals. Instead of detecting IPs and then removing unstable or inconsistent IP candidates, we introduce IP stability derived from a stochastic model of inherent fluctuations to detect more stable IPs. The experimental results show that the proposed IP detector outperforms the SIFT detector in terms of repeatability and matching rates. |
doi_str_mv | 10.11185/imt.7.256 |
format | Article |
fullrecord | <record><control><sourceid>proquest_jstag</sourceid><recordid>TN_cdi_proquest_journals_1440081199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092555291</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2789-368be17e60be9865ad0761dccf6d335bfc78ef326c0b7bd3407dbf2e3e832d63</originalsourceid><addsrcrecordid>eNo9UE1LAzEQDYJgqb34CxY8b81sukn24MHWTygotPeQj1nNst2tSSr03xutODDMMPN48-YRcgV0DgCyvvG7NBfzquZnZAJSQkllwy_ILMaO_oSgIMSELF-GhAFjKt5GP6TiHhPa5MehWOqIrsjNJo32Q8fkre77Y0YE_5U3m6SN7306XpLzVvcRZ391SraPD9vVc7l-fXpZ3a3LrhKyKRmXBkEgpwYbyWvtqODgrG25Y6w2rRUSW1ZxS40wji2ocKatkKFkleNsSq5PtPswfh6yYtWNhzDkiwoWC0olQNNk1O0J1cWk31Htg9_pcFQ6ZP09qmyLEgp-M5vzP88fBoUD-waxLWDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1440081199</pqid></control><display><type>article</type><title>Interest Point Detection Based on Stochastically Derived Stability</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Watchareeruetai, Ukrit ; Kimura, Akisato ; Bao, Robert Cheng ; Kawanishi, Takahito ; Kashino, Kunio</creator><creatorcontrib>Watchareeruetai, Ukrit ; Kimura, Akisato ; Bao, Robert Cheng ; Kawanishi, Takahito ; Kashino, Kunio</creatorcontrib><description>We propose a novel framework called StochasticSIFT for detecting interest points (IPs) in video sequences. The proposed framework incorporates a stochastic model considering the temporal dynamics of videos into the SIFT detector to improve robustness against fluctuations inherent to video signals. Instead of detecting IPs and then removing unstable or inconsistent IP candidates, we introduce IP stability derived from a stochastic model of inherent fluctuations to detect more stable IPs. The experimental results show that the proposed IP detector outperforms the SIFT detector in terms of repeatability and matching rates.</description><identifier>EISSN: 1881-0896</identifier><identifier>DOI: 10.11185/imt.7.256</identifier><language>eng</language><publisher>Tokyo: Information and Media Technologies Editorial Board</publisher><ispartof>Information and Media Technologies, 2012, Vol.7(1), pp.256-267</ispartof><rights>2012 Information Processing Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2012</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Watchareeruetai, Ukrit</creatorcontrib><creatorcontrib>Kimura, Akisato</creatorcontrib><creatorcontrib>Bao, Robert Cheng</creatorcontrib><creatorcontrib>Kawanishi, Takahito</creatorcontrib><creatorcontrib>Kashino, Kunio</creatorcontrib><title>Interest Point Detection Based on Stochastically Derived Stability</title><title>Information and Media Technologies</title><addtitle>IMT</addtitle><description>We propose a novel framework called StochasticSIFT for detecting interest points (IPs) in video sequences. The proposed framework incorporates a stochastic model considering the temporal dynamics of videos into the SIFT detector to improve robustness against fluctuations inherent to video signals. Instead of detecting IPs and then removing unstable or inconsistent IP candidates, we introduce IP stability derived from a stochastic model of inherent fluctuations to detect more stable IPs. The experimental results show that the proposed IP detector outperforms the SIFT detector in terms of repeatability and matching rates.</description><issn>1881-0896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9UE1LAzEQDYJgqb34CxY8b81sukn24MHWTygotPeQj1nNst2tSSr03xutODDMMPN48-YRcgV0DgCyvvG7NBfzquZnZAJSQkllwy_ILMaO_oSgIMSELF-GhAFjKt5GP6TiHhPa5MehWOqIrsjNJo32Q8fkre77Y0YE_5U3m6SN7306XpLzVvcRZ391SraPD9vVc7l-fXpZ3a3LrhKyKRmXBkEgpwYbyWvtqODgrG25Y6w2rRUSW1ZxS40wji2ocKatkKFkleNsSq5PtPswfh6yYtWNhzDkiwoWC0olQNNk1O0J1cWk31Htg9_pcFQ6ZP09qmyLEgp-M5vzP88fBoUD-waxLWDM</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Watchareeruetai, Ukrit</creator><creator>Kimura, Akisato</creator><creator>Bao, Robert Cheng</creator><creator>Kawanishi, Takahito</creator><creator>Kashino, Kunio</creator><general>Information and Media Technologies Editorial Board</general><general>Japan Science and Technology Agency</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2012</creationdate><title>Interest Point Detection Based on Stochastically Derived Stability</title><author>Watchareeruetai, Ukrit ; Kimura, Akisato ; Bao, Robert Cheng ; Kawanishi, Takahito ; Kashino, Kunio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2789-368be17e60be9865ad0761dccf6d335bfc78ef326c0b7bd3407dbf2e3e832d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Watchareeruetai, Ukrit</creatorcontrib><creatorcontrib>Kimura, Akisato</creatorcontrib><creatorcontrib>Bao, Robert Cheng</creatorcontrib><creatorcontrib>Kawanishi, Takahito</creatorcontrib><creatorcontrib>Kashino, Kunio</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information and Media Technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watchareeruetai, Ukrit</au><au>Kimura, Akisato</au><au>Bao, Robert Cheng</au><au>Kawanishi, Takahito</au><au>Kashino, Kunio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interest Point Detection Based on Stochastically Derived Stability</atitle><jtitle>Information and Media Technologies</jtitle><addtitle>IMT</addtitle><date>2012</date><risdate>2012</risdate><volume>7</volume><issue>1</issue><spage>256</spage><epage>267</epage><pages>256-267</pages><eissn>1881-0896</eissn><abstract>We propose a novel framework called StochasticSIFT for detecting interest points (IPs) in video sequences. The proposed framework incorporates a stochastic model considering the temporal dynamics of videos into the SIFT detector to improve robustness against fluctuations inherent to video signals. Instead of detecting IPs and then removing unstable or inconsistent IP candidates, we introduce IP stability derived from a stochastic model of inherent fluctuations to detect more stable IPs. The experimental results show that the proposed IP detector outperforms the SIFT detector in terms of repeatability and matching rates.</abstract><cop>Tokyo</cop><pub>Information and Media Technologies Editorial Board</pub><doi>10.11185/imt.7.256</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1881-0896 |
ispartof | Information and Media Technologies, 2012, Vol.7(1), pp.256-267 |
issn | 1881-0896 |
language | eng |
recordid | cdi_proquest_journals_1440081199 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
title | Interest Point Detection Based on Stochastically Derived Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A15%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_jstag&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interest%20Point%20Detection%20Based%20on%20Stochastically%20Derived%20Stability&rft.jtitle=Information%20and%20Media%20Technologies&rft.au=Watchareeruetai,%20Ukrit&rft.date=2012&rft.volume=7&rft.issue=1&rft.spage=256&rft.epage=267&rft.pages=256-267&rft.eissn=1881-0896&rft_id=info:doi/10.11185/imt.7.256&rft_dat=%3Cproquest_jstag%3E3092555291%3C/proquest_jstag%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1440081199&rft_id=info:pmid/&rfr_iscdi=true |