Interest Point Detection Based on Stochastically Derived Stability

We propose a novel framework called StochasticSIFT for detecting interest points (IPs) in video sequences. The proposed framework incorporates a stochastic model considering the temporal dynamics of videos into the SIFT detector to improve robustness against fluctuations inherent to video signals. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information and Media Technologies 2012, Vol.7(1), pp.256-267
Hauptverfasser: Watchareeruetai, Ukrit, Kimura, Akisato, Bao, Robert Cheng, Kawanishi, Takahito, Kashino, Kunio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 267
container_issue 1
container_start_page 256
container_title Information and Media Technologies
container_volume 7
creator Watchareeruetai, Ukrit
Kimura, Akisato
Bao, Robert Cheng
Kawanishi, Takahito
Kashino, Kunio
description We propose a novel framework called StochasticSIFT for detecting interest points (IPs) in video sequences. The proposed framework incorporates a stochastic model considering the temporal dynamics of videos into the SIFT detector to improve robustness against fluctuations inherent to video signals. Instead of detecting IPs and then removing unstable or inconsistent IP candidates, we introduce IP stability derived from a stochastic model of inherent fluctuations to detect more stable IPs. The experimental results show that the proposed IP detector outperforms the SIFT detector in terms of repeatability and matching rates.
doi_str_mv 10.11185/imt.7.256
format Article
fullrecord <record><control><sourceid>proquest_jstag</sourceid><recordid>TN_cdi_proquest_journals_1440081199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092555291</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2789-368be17e60be9865ad0761dccf6d335bfc78ef326c0b7bd3407dbf2e3e832d63</originalsourceid><addsrcrecordid>eNo9UE1LAzEQDYJgqb34CxY8b81sukn24MHWTygotPeQj1nNst2tSSr03xutODDMMPN48-YRcgV0DgCyvvG7NBfzquZnZAJSQkllwy_ILMaO_oSgIMSELF-GhAFjKt5GP6TiHhPa5MehWOqIrsjNJo32Q8fkre77Y0YE_5U3m6SN7306XpLzVvcRZ391SraPD9vVc7l-fXpZ3a3LrhKyKRmXBkEgpwYbyWvtqODgrG25Y6w2rRUSW1ZxS40wji2ocKatkKFkleNsSq5PtPswfh6yYtWNhzDkiwoWC0olQNNk1O0J1cWk31Htg9_pcFQ6ZP09qmyLEgp-M5vzP88fBoUD-waxLWDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1440081199</pqid></control><display><type>article</type><title>Interest Point Detection Based on Stochastically Derived Stability</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Watchareeruetai, Ukrit ; Kimura, Akisato ; Bao, Robert Cheng ; Kawanishi, Takahito ; Kashino, Kunio</creator><creatorcontrib>Watchareeruetai, Ukrit ; Kimura, Akisato ; Bao, Robert Cheng ; Kawanishi, Takahito ; Kashino, Kunio</creatorcontrib><description>We propose a novel framework called StochasticSIFT for detecting interest points (IPs) in video sequences. The proposed framework incorporates a stochastic model considering the temporal dynamics of videos into the SIFT detector to improve robustness against fluctuations inherent to video signals. Instead of detecting IPs and then removing unstable or inconsistent IP candidates, we introduce IP stability derived from a stochastic model of inherent fluctuations to detect more stable IPs. The experimental results show that the proposed IP detector outperforms the SIFT detector in terms of repeatability and matching rates.</description><identifier>EISSN: 1881-0896</identifier><identifier>DOI: 10.11185/imt.7.256</identifier><language>eng</language><publisher>Tokyo: Information and Media Technologies Editorial Board</publisher><ispartof>Information and Media Technologies, 2012, Vol.7(1), pp.256-267</ispartof><rights>2012 Information Processing Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2012</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Watchareeruetai, Ukrit</creatorcontrib><creatorcontrib>Kimura, Akisato</creatorcontrib><creatorcontrib>Bao, Robert Cheng</creatorcontrib><creatorcontrib>Kawanishi, Takahito</creatorcontrib><creatorcontrib>Kashino, Kunio</creatorcontrib><title>Interest Point Detection Based on Stochastically Derived Stability</title><title>Information and Media Technologies</title><addtitle>IMT</addtitle><description>We propose a novel framework called StochasticSIFT for detecting interest points (IPs) in video sequences. The proposed framework incorporates a stochastic model considering the temporal dynamics of videos into the SIFT detector to improve robustness against fluctuations inherent to video signals. Instead of detecting IPs and then removing unstable or inconsistent IP candidates, we introduce IP stability derived from a stochastic model of inherent fluctuations to detect more stable IPs. The experimental results show that the proposed IP detector outperforms the SIFT detector in terms of repeatability and matching rates.</description><issn>1881-0896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9UE1LAzEQDYJgqb34CxY8b81sukn24MHWTygotPeQj1nNst2tSSr03xutODDMMPN48-YRcgV0DgCyvvG7NBfzquZnZAJSQkllwy_ILMaO_oSgIMSELF-GhAFjKt5GP6TiHhPa5MehWOqIrsjNJo32Q8fkre77Y0YE_5U3m6SN7306XpLzVvcRZ391SraPD9vVc7l-fXpZ3a3LrhKyKRmXBkEgpwYbyWvtqODgrG25Y6w2rRUSW1ZxS40wji2ocKatkKFkleNsSq5PtPswfh6yYtWNhzDkiwoWC0olQNNk1O0J1cWk31Htg9_pcFQ6ZP09qmyLEgp-M5vzP88fBoUD-waxLWDM</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Watchareeruetai, Ukrit</creator><creator>Kimura, Akisato</creator><creator>Bao, Robert Cheng</creator><creator>Kawanishi, Takahito</creator><creator>Kashino, Kunio</creator><general>Information and Media Technologies Editorial Board</general><general>Japan Science and Technology Agency</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2012</creationdate><title>Interest Point Detection Based on Stochastically Derived Stability</title><author>Watchareeruetai, Ukrit ; Kimura, Akisato ; Bao, Robert Cheng ; Kawanishi, Takahito ; Kashino, Kunio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2789-368be17e60be9865ad0761dccf6d335bfc78ef326c0b7bd3407dbf2e3e832d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Watchareeruetai, Ukrit</creatorcontrib><creatorcontrib>Kimura, Akisato</creatorcontrib><creatorcontrib>Bao, Robert Cheng</creatorcontrib><creatorcontrib>Kawanishi, Takahito</creatorcontrib><creatorcontrib>Kashino, Kunio</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information and Media Technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watchareeruetai, Ukrit</au><au>Kimura, Akisato</au><au>Bao, Robert Cheng</au><au>Kawanishi, Takahito</au><au>Kashino, Kunio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interest Point Detection Based on Stochastically Derived Stability</atitle><jtitle>Information and Media Technologies</jtitle><addtitle>IMT</addtitle><date>2012</date><risdate>2012</risdate><volume>7</volume><issue>1</issue><spage>256</spage><epage>267</epage><pages>256-267</pages><eissn>1881-0896</eissn><abstract>We propose a novel framework called StochasticSIFT for detecting interest points (IPs) in video sequences. The proposed framework incorporates a stochastic model considering the temporal dynamics of videos into the SIFT detector to improve robustness against fluctuations inherent to video signals. Instead of detecting IPs and then removing unstable or inconsistent IP candidates, we introduce IP stability derived from a stochastic model of inherent fluctuations to detect more stable IPs. The experimental results show that the proposed IP detector outperforms the SIFT detector in terms of repeatability and matching rates.</abstract><cop>Tokyo</cop><pub>Information and Media Technologies Editorial Board</pub><doi>10.11185/imt.7.256</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1881-0896
ispartof Information and Media Technologies, 2012, Vol.7(1), pp.256-267
issn 1881-0896
language eng
recordid cdi_proquest_journals_1440081199
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
title Interest Point Detection Based on Stochastically Derived Stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A15%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_jstag&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interest%20Point%20Detection%20Based%20on%20Stochastically%20Derived%20Stability&rft.jtitle=Information%20and%20Media%20Technologies&rft.au=Watchareeruetai,%20Ukrit&rft.date=2012&rft.volume=7&rft.issue=1&rft.spage=256&rft.epage=267&rft.pages=256-267&rft.eissn=1881-0896&rft_id=info:doi/10.11185/imt.7.256&rft_dat=%3Cproquest_jstag%3E3092555291%3C/proquest_jstag%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1440081199&rft_id=info:pmid/&rfr_iscdi=true