Interest Point Detection Based on Stochastically Derived Stability

We propose a novel framework called StochasticSIFT for detecting interest points (IPs) in video sequences. The proposed framework incorporates a stochastic model considering the temporal dynamics of videos into the SIFT detector to improve robustness against fluctuations inherent to video signals. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information and Media Technologies 2012, Vol.7(1), pp.256-267
Hauptverfasser: Watchareeruetai, Ukrit, Kimura, Akisato, Bao, Robert Cheng, Kawanishi, Takahito, Kashino, Kunio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a novel framework called StochasticSIFT for detecting interest points (IPs) in video sequences. The proposed framework incorporates a stochastic model considering the temporal dynamics of videos into the SIFT detector to improve robustness against fluctuations inherent to video signals. Instead of detecting IPs and then removing unstable or inconsistent IP candidates, we introduce IP stability derived from a stochastic model of inherent fluctuations to detect more stable IPs. The experimental results show that the proposed IP detector outperforms the SIFT detector in terms of repeatability and matching rates.
ISSN:1881-0896
DOI:10.11185/imt.7.256