Two Sample Problem for Rounded Data
This paper deals with the two sample problem for rounded data in the i.i.d. model. It is well known that under the null hypothesis the two sample Kolmogorov-Smirnov statistic without rounding converges in distribution to the supremum of a standard Brownian bridge. We establish that a natural statist...
Gespeichert in:
Veröffentlicht in: | JOURNAL OF THE JAPAN STATISTICAL SOCIETY 2010/02/28, Vol.39(2), pp.233-238 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the two sample problem for rounded data in the i.i.d. model. It is well known that under the null hypothesis the two sample Kolmogorov-Smirnov statistic without rounding converges in distribution to the supremum of a standard Brownian bridge. We establish that a natural statistic of the Kolmogorov-Smirnov type based on the rounded data converges in distribution to the same limit as the full observation case. Our result is based on ``Donsker's theorem for discretized data'' given by Nishiyama (2008, J. Japan Statist. Soc.). |
---|---|
ISSN: | 1882-2754 1348-6365 |
DOI: | 10.14490/jjss.39.233 |