Backward Stochastic Differential Equations and Optimal Control of Marked Point Processes
We study a class of backward stochastic differential equations (BSDEs) driven by a random measure or, equivalently, by a marked point process. Under appropriate assumptions we prove well-posedness and continuous dependence of the solution on the data. We next address optimal control problems for poi...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 2013-01, Vol.51 (5), p.3592-3623 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3623 |
---|---|
container_issue | 5 |
container_start_page | 3592 |
container_title | SIAM journal on control and optimization |
container_volume | 51 |
creator | Confortola, Fulvia Fuhrman, Marco |
description | We study a class of backward stochastic differential equations (BSDEs) driven by a random measure or, equivalently, by a marked point process. Under appropriate assumptions we prove well-posedness and continuous dependence of the solution on the data. We next address optimal control problems for point processes of general non-Markovian type and show that BSDEs can be used to prove existence of an optimal control and to represent the value function. Finally we introduce a Hamilton--Jacobi--Bellman equation, also stochastic and of backward type, for this class of control problems: when the state space is finite or countable we show that it admits a unique solution which identifies the (random) value function and can be represented by means of the BSDEs introduced above. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/120902835 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1435575645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079942601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-e578033db4611d01bbcc2b795e1767f6c1e10f21924ae24de9785ff2b39c5b3</originalsourceid><addsrcrecordid>eNo9kE1LAzEYhIMoWKsH_0HAk4fVvPnYbI5a6wdUWqgHb0s2-wa3rZs2SRH_vSsVTwPDwwwzhFwCuwEQ-hY4M4xXQh2RETCjCg2iOiYjJkpRMODmlJyltGIMpAQ5Iu_31q2_bGzpMgf3YVPuHH3ovMeIfe7shk53e5u70Cdq-5bOt7n7HNxJ6HMMGxo8fbVxjS1dhK7PdBGDw5QwnZMTbzcJL_50TJaP07fJczGbP71M7maF44bnApWumBBtI0uAlkHTOMcbbRSCLrUvHSAwz8FwaZHLFo2ulPe8EcapRozJ1SF1G8NujynXq7CP_VBYgxRKaVVKNVDXB8rFkFJEX2_jsCJ-18Dq39vq_9vED2E8Xqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1435575645</pqid></control><display><type>article</type><title>Backward Stochastic Differential Equations and Optimal Control of Marked Point Processes</title><source>SIAM Journals Online</source><creator>Confortola, Fulvia ; Fuhrman, Marco</creator><creatorcontrib>Confortola, Fulvia ; Fuhrman, Marco</creatorcontrib><description>We study a class of backward stochastic differential equations (BSDEs) driven by a random measure or, equivalently, by a marked point process. Under appropriate assumptions we prove well-posedness and continuous dependence of the solution on the data. We next address optimal control problems for point processes of general non-Markovian type and show that BSDEs can be used to prove existence of an optimal control and to represent the value function. Finally we introduce a Hamilton--Jacobi--Bellman equation, also stochastic and of backward type, for this class of control problems: when the state space is finite or countable we show that it admits a unique solution which identifies the (random) value function and can be represented by means of the BSDEs introduced above. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/120902835</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Random variables</subject><ispartof>SIAM journal on control and optimization, 2013-01, Vol.51 (5), p.3592-3623</ispartof><rights>2013, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-e578033db4611d01bbcc2b795e1767f6c1e10f21924ae24de9785ff2b39c5b3</citedby><cites>FETCH-LOGICAL-c292t-e578033db4611d01bbcc2b795e1767f6c1e10f21924ae24de9785ff2b39c5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3170,27903,27904</link.rule.ids></links><search><creatorcontrib>Confortola, Fulvia</creatorcontrib><creatorcontrib>Fuhrman, Marco</creatorcontrib><title>Backward Stochastic Differential Equations and Optimal Control of Marked Point Processes</title><title>SIAM journal on control and optimization</title><description>We study a class of backward stochastic differential equations (BSDEs) driven by a random measure or, equivalently, by a marked point process. Under appropriate assumptions we prove well-posedness and continuous dependence of the solution on the data. We next address optimal control problems for point processes of general non-Markovian type and show that BSDEs can be used to prove existence of an optimal control and to represent the value function. Finally we introduce a Hamilton--Jacobi--Bellman equation, also stochastic and of backward type, for this class of control problems: when the state space is finite or countable we show that it admits a unique solution which identifies the (random) value function and can be represented by means of the BSDEs introduced above. [PUBLICATION ABSTRACT]</description><subject>Random variables</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LAzEYhIMoWKsH_0HAk4fVvPnYbI5a6wdUWqgHb0s2-wa3rZs2SRH_vSsVTwPDwwwzhFwCuwEQ-hY4M4xXQh2RETCjCg2iOiYjJkpRMODmlJyltGIMpAQ5Iu_31q2_bGzpMgf3YVPuHH3ovMeIfe7shk53e5u70Cdq-5bOt7n7HNxJ6HMMGxo8fbVxjS1dhK7PdBGDw5QwnZMTbzcJL_50TJaP07fJczGbP71M7maF44bnApWumBBtI0uAlkHTOMcbbRSCLrUvHSAwz8FwaZHLFo2ulPe8EcapRozJ1SF1G8NujynXq7CP_VBYgxRKaVVKNVDXB8rFkFJEX2_jsCJ-18Dq39vq_9vED2E8Xqw</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Confortola, Fulvia</creator><creator>Fuhrman, Marco</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20130101</creationdate><title>Backward Stochastic Differential Equations and Optimal Control of Marked Point Processes</title><author>Confortola, Fulvia ; Fuhrman, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-e578033db4611d01bbcc2b795e1767f6c1e10f21924ae24de9785ff2b39c5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Confortola, Fulvia</creatorcontrib><creatorcontrib>Fuhrman, Marco</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Confortola, Fulvia</au><au>Fuhrman, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Backward Stochastic Differential Equations and Optimal Control of Marked Point Processes</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>51</volume><issue>5</issue><spage>3592</spage><epage>3623</epage><pages>3592-3623</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><abstract>We study a class of backward stochastic differential equations (BSDEs) driven by a random measure or, equivalently, by a marked point process. Under appropriate assumptions we prove well-posedness and continuous dependence of the solution on the data. We next address optimal control problems for point processes of general non-Markovian type and show that BSDEs can be used to prove existence of an optimal control and to represent the value function. Finally we introduce a Hamilton--Jacobi--Bellman equation, also stochastic and of backward type, for this class of control problems: when the state space is finite or countable we show that it admits a unique solution which identifies the (random) value function and can be represented by means of the BSDEs introduced above. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/120902835</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-0129 |
ispartof | SIAM journal on control and optimization, 2013-01, Vol.51 (5), p.3592-3623 |
issn | 0363-0129 1095-7138 |
language | eng |
recordid | cdi_proquest_journals_1435575645 |
source | SIAM Journals Online |
subjects | Random variables |
title | Backward Stochastic Differential Equations and Optimal Control of Marked Point Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Backward%20Stochastic%20Differential%20Equations%20and%20Optimal%20Control%20of%20Marked%20Point%20Processes&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Confortola,%20Fulvia&rft.date=2013-01-01&rft.volume=51&rft.issue=5&rft.spage=3592&rft.epage=3623&rft.pages=3592-3623&rft.issn=0363-0129&rft.eissn=1095-7138&rft_id=info:doi/10.1137/120902835&rft_dat=%3Cproquest_cross%3E3079942601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1435575645&rft_id=info:pmid/&rfr_iscdi=true |