Backward Stochastic Differential Equations and Optimal Control of Marked Point Processes

We study a class of backward stochastic differential equations (BSDEs) driven by a random measure or, equivalently, by a marked point process. Under appropriate assumptions we prove well-posedness and continuous dependence of the solution on the data. We next address optimal control problems for poi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2013-01, Vol.51 (5), p.3592-3623
Hauptverfasser: Confortola, Fulvia, Fuhrman, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a class of backward stochastic differential equations (BSDEs) driven by a random measure or, equivalently, by a marked point process. Under appropriate assumptions we prove well-posedness and continuous dependence of the solution on the data. We next address optimal control problems for point processes of general non-Markovian type and show that BSDEs can be used to prove existence of an optimal control and to represent the value function. Finally we introduce a Hamilton--Jacobi--Bellman equation, also stochastic and of backward type, for this class of control problems: when the state space is finite or countable we show that it admits a unique solution which identifies the (random) value function and can be represented by means of the BSDEs introduced above. [PUBLICATION ABSTRACT]
ISSN:0363-0129
1095-7138
DOI:10.1137/120902835