A 325-MHz GMRT survey of the Herschel-ATLAS/GAMA fields

We describe a 325-MHz survey, undertaken with the Giant Metrewave Radio Telescope (GMRT), which covers a large part of the three equatorial fields at 9, 12 and 14.5 h of right ascension from the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) in the area also covered by the Galaxy And M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2013-10, Vol.435 (1), p.650-662
Hauptverfasser: Mauch, Tom, Klöckner, Hans-Rainer, Rawlings, Steve, Jarvis, Matt, Hardcastle, Martin J., Obreschkow, Danail, Saikia, D. J., Thompson, Mark A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a 325-MHz survey, undertaken with the Giant Metrewave Radio Telescope (GMRT), which covers a large part of the three equatorial fields at 9, 12 and 14.5 h of right ascension from the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) in the area also covered by the Galaxy And Mass Assembly (GAMA) survey. The full data set, after some observed pointings were removed during the data reduction process, comprises 212 GMRT pointings covering ∼90 deg2 of sky. We have imaged and catalogued the data using a pipeline that automates the process of flagging, calibration, self-calibration and source detection for each of the survey pointings. The resulting images have resolutions of between 14 and 24 arcsec and minimum rms noise (away from bright sources) of ∼1 mJy beam−1, and the catalogue contains 5263 sources brighter than 5σ. We investigate the spectral indices of GMRT sources which are also detected at 1.4 GHz and find them to agree broadly with previously published results; there is no evidence for any flattening of the radio spectral index below S 1.4 = 10 mJy. This work adds to the large amount of available optical and infrared data in the H-ATLAS equatorial fields and will facilitate further study of the low-frequency radio properties of star formation and AGN activity in galaxies out to z ∼ 1.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stt1323