Artificial Neural Network Models to Predict Effort and Errors for Embedded Software Development Projects

In this paper, we establish effort and error prediction models using an artificial neural networks (ANNs). We propose the normalizing method to reduce the margin of errors for ANN models. In addition, we perform an evaluation experiment to compare the accuracy of the ANN models with that of the regr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Denki Gakkai ronbunshi. C, Erekutoronikusu, joho kogaku, shisutemu Information and Systems, 2010/12/01, Vol.130(12), pp.2167-2173
Hauptverfasser: Iwata, Kazunori, Nakashima, Toyoshiro, Anan, Yoshiyuki, Ishii, Naohiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we establish effort and error prediction models using an artificial neural networks (ANNs). We propose the normalizing method to reduce the margin of errors for ANN models. In addition, we perform an evaluation experiment to compare the accuracy of the ANN models with that of the regression analysis (RA) model and that of two ANN models using Steel-Dwass's multiple comparison test. The results show that each ANN model is more accurate than the RA model and the proposed method can reduce the errors for some cases, since the mean errors of the ANN models are statistically significantly lower.
ISSN:0385-4221
1348-8155
DOI:10.1541/ieejeiss.130.2167